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Abstract

This paper describes automatic speech recognition systems that satisfy two technological objectives. First, we seek to

improve the automatic labeling of prosody, in order to aid future research in automatic speech understanding. Second,

we seek to apply statistical speech recognition models of prosody for the purpose of reducing the word error rate of an

automatic speech recognizer. The systems described in this paper are variants of a core dynamic Bayesian network

model, in which the key hidden variables are the word, the prosodic tag sequence, and the prosody-dependent allo-

phones. Statistical models of the interaction among words and prosodic tags are trained using the Boston University

Radio Speech Corpus, a database annotated using the tones and break indices (ToBI) prosodic annotation system. This

paper presents both theoretical and empirical results in support of the conclusion that a prosody-dependent speech rec-

ognizer—a recognizer that simultaneously computes the most-probable word labels and prosodic tags—can provide

lower word recognition error rates than a standard prosody-independent speech recognizer in a multi-speaker

speaker-dependent speech recognition task on radio speech.
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1. Introduction

Prosody (the rhythm and intonation patterns of

spoken language) helps listeners to understand
speech with minimum cognitive load (Hahn,

1999). The acoustic cues of duration, intensity

and pitch combine to confer prosodic prominence
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or stress at two levels in English: lexical stress is

located on one syllable within a word, and phrasal

prominence is located on one or more words with-

in a phrase. Lexical stress provides a partial indica-

tor of word boundaries in continuous speech, and
phrasal prominence plays an important role in sig-

naling the contribution of a word to the evolving

discourse. Lexical stress and phrasal prominence

are relevant to the development of speech recogni-

tion systems because they each affect the pronunci-

ation of the individual phonemes that make up the

words in an utterance. The consonants and vowels

in a prominent syllable are pronounced with greater
clarity and duration than in a syllable without

prominence. In English, these effects are especially

dramatic: in syllables lacking lexical stress, conso-

nants and vowels are significantly reduced in both

time and frequency dimensions (Kent and Netsell,

1971), leading to ambiguity in segmentation of the

speech stream and in identification of the individ-

ual phonemes. In addition to marking prominence,
prosodic cues also serve to signal the phrase struc-

ture of the utterance, identifying word sequences

that must be grouped together in the construction

of the sentence meaning in a given discourse con-

text. Prosodic phrasing is also relevant to speech

recognition because the intonational and rhythmic

patterns that signal major phrase breaks and sen-

tence boundaries provide acoustic analogs to
punctuation marks and font-based highlighting

present in text.

The research described in this paper has two

goals. First, we seek to improve the automatic

labeling of prosody, in order to aid future research

in automatic speech understanding. Second, we

seek to apply statistical speech recognition models

of prosody for the purpose of reducing the word
error rate of an automatic speech recognizer. The

proposed models are built around a core dynamic

Bayesian network model, in which the key hidden

variables are the word, the prosodic tag sequence,

and the prosody-dependent allophones. In the task

of word recognition, the prosodic labels may be

known, unknown, or ignored. In the task of auto-

matic prosody annotation, the word labels may be
known, unknown, or ignored. In the typical situa-

tion confronted by an automatic speech recog-

nizer, neither the prosodic tag sequence nor the
word labels are known a priori. This paper pre-

sents both an information-theoretic analysis and

a large number of statistical results in support of

the conclusion that a prosody-dependent speech

recognizer—a recognizer that simultaneously com-
putes the most-probable word labels and prosodic

tags—can provide lower word recognition error

rates than a standard prosody-independent speech

recognizer.

Many results described in this paper have been

previously published in short papers, conference

papers, and theses, including (Chen et al., 2003a;

Chen et al., 2003b; Chen and Hasegawa-Johnson,
2003; Chen and Hasegawa-Johnson, 2004; Chen

et al., 2004b; Chen et al., 2004a; Hasegawa-John-

son et al., 2004; Kim et al., 2004b; Cole et al.,

2003; Kim et al., 2004a; Borys, 2003; Cohen,

2004; Ren et al., 2004; Chavarria et al., 2004). A

key objective of this paper is to bring these several

papers together in one location, in order to present

a coherent summary of results to the automatic
speech recognition and prosody communities.
2. Background

The task of a speech recognizer, given a se-

quence of observed short-time slices of the acoustic

spectrum, is to find the sequence of word models
that maximizes the recognition probability:

bW ¼ argmax pðW jOÞ
¼ argmax pðOjW ÞpðW Þ
� argmax pðOjQÞpðQjW ÞpðW Þ ð1Þ

where Q = [q1, . . ., qL] is a sequence of sub-word

units, typically clustered triphones, p(OjQ) is the
acoustic model, p(QjW) is the pronunciationmodel,

and p(W) is the language model. The systems

reported in this paper use a non-probabilistic dic-

tionary, meaning that the search algorithm as-

sumes p(QjW) = 1 for all allowed pronunciations.

The dictionary for these experiments was created

based on the dictionary supplied with the Radio

Speech Corpus. No phonological expansion was
applied, thus the only alternate pronunciations in

the dictionary are those supplied by human
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transcribers; the pronunciation density is 1.01

pronunciations/word.

2.1. Modeling prosody

There are at least three components of prosody

that can be incorporated into a speech recognition

system: lexical stress, prosodic phrasing, and

phrasal prominence. Lexical stress is marked inva-

riantly for each word in its dictionary transcrip-

tion, designating the primary stressed syllable

within the word. Prosodic phrasing groups words

in a sentence into a hierarchical structure, and
the key word in each phrase receives an extra phra-

sal prominence on its lexically stressed syllable.

Phrasal prominence is cued variably by pitch ac-

cent, increased duration, and possibly increased

energy, centered on or immediately after the lexi-

cally stressed syllable in the prominent word, and

marks a word as contributing new information

to the discourse, among other functions. For
example, phrasal prominence on the words ‘‘bana-

na’’ and ‘‘hand’’ signal the important words in the

sentence ‘‘He has a baNAna in his HAND’’. If the

sentence is uttered as an answer to the question

‘‘What does the gorilla have’’, the phrasal promi-

nence of the word ‘‘banana’’ may be perceptually

stronger than that of the word ‘‘hand;’’ the former

word is then said to carry an emphatic or contras-
tive accent.

Phrasal prominence is usually realized on a lexi-

cally stressed syllable, and thus also serves as a cue

to lexical stress. Conversely, a syllable without lex-

ical stress is often realized with a non-distinctive,

reduced vowel quality (schwa) in English, as in

the first syllable of the word ‘‘banana’’. A number

of phonological processes affecting consonant real-
ization also depend on lexical stress, such as the

process that realizes a /t/ or /d/ as a flapped sound,

as in the medial consonant of ‘‘butter’’. Both lexi-

cal stress and phrasal prominence cause acoustic

changes in consonants and vowels that are large

enough to potentially confound a speech recogni-

tion system. Lexical stress is deterministic, speci-

fied in the dictionary entry for all occurrences of
a word, and as such it is not difficult to use in

speech recognition. But there is little to be gained

by doing so. All standard recognizers explicitly
model the difference between reduced vowels

(schwa) and non-reduced vowels in dictionary

entries, without direct reference to stress (Lee

and Hon, 1989; Zue et al., 1990). In the absence

of phrasal prominence, stress-related differences
other than vowel reduction have been found to

be too small to be useful for speech recognition

(van Kuijk and Boves, 1999).

Prosodic phrasing and phrasal prominence are

not deterministic, but vary depending on the syn-

tax, dialog context, and speaking style of any par-

ticular utterance. These aspects of prosody are

more difficult to model than lexical stress, but
may be more rewarding. The prosodic phrase

structure and prominences of an utterance may

be coded in a vector of auxiliary word annotation,

P = [p1, . . ., pM] of length equal to the word string

W = [w1, . . ., wM]. For each word wi in W, the

entry pi in P specifies the depth of the phrase

boundary following wi and the level of phrasal

prominence on the word wi.
For our research we have adopted a reduced

form of the ToBI (Tones and Break Indices) nota-

tional conventions. ToBI is an international stan-

dard for prosodic transcription among speech

scientists across disciplines (Silverman et al.,

1992), which has been used to annotate at least

four English-language databases of recorded

speech including the DCIEM Map Task corpus,
the Boston University Radio Speech Corpus

(Ostendorf et al., 1995), the Boston Directions

Corpus (Hirschberg and Nakatani, 1998), and

two subsets of the Switchboard Corpus (Chavarria

et al., 2004; Ostendorf et al., 2002). The ToBI sys-

tem marks the strength of the boundary between

words in an utterance by a ‘‘break index’’ between

0 and 4, and also marks the tonal melody express-
ing phrasal prominence. The break indices distin-

guish the normal word boundary (‘‘level 1’’)

from the weaker boundary that allows a function

word to graft onto an adjacent word (‘‘level 0’’),

e.g. between the words ‘‘in’’ and ‘‘the’’ in the

phrase ‘‘in the dark’’. Stronger boundaries sepa-

rate prosodic phrases at two levels: the intona-

tional (�major�) phrase and the intermediate
(�minor�) phrase. An intonational phrase is built

up from one or more intermediate phrases, which

in turn may consist of a sequence of one or more
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words. The hierarchical prosodic phrase structure

constrains the placement of phrasal prominences,

which are assigned one per intermediate phrase,

with a culminating main prominence on the inter-

mediate phrase that contributes the most impor-
tant information to the utterance. The prosodic

phrase boundaries are partially determined by syn-

tactic phrase structure, but prosodic and syntactic

phrases are not isomorphic, and the discrepancy is

in part responsible for the challenge of prosodic

parsing in speech recognition. Thus, each entry

in the vector P consists of a break index (0, 1, 3,

or 4) and, if the word has phrasal prominence, a
symbol describing the tonal melody of the promi-

nence (e.g., H* + L marking a high-falling pitch

contour). Examples of possible prosodic transcrip-

tions of simple sentences are given in Table 1.

The ToBI system labels pitch accent tones,

phrase boundary tones, and prosodic phrase break

indices. Tone labels indicate phrase boundary

tones and pitch accents. Tone labels are con-
structed from the three basic elements H, L, and

!H, representing high tone, low tone, and high tone

followed by pitch downstep, respectively. There

are four primary types of intonational phrase

boundary tones: L–L%, representing a declara-

tion-final pitch fall, L–H%, representing a medial

pitch (sometimes called a ‘‘continuation rise’’),

H–H%, representing a canonical yes–no question
contour, and H–L%; the contours !H–L% and

!H–H% are less frequently observed. Seven types

of accent tones are labeled: H*, !H*, L + H*,

L + !H*, L*, L* + H and H + !H*.

The ToBI system has the advantage that it can

be used consistently by labelers for a variety of

styles. For example, if one allows a level of uncer-

tainty in order to account for differences in label-
Table 1

Sample prosody of the words ‘‘kids play in the park’’

Punctuated orthography Word string

‘‘Kids play in the park’’. W = (kids, play, in, the, par

‘‘Kids play, in the park’’. W = (kids, play, in, the, par

‘‘Kids, play in the park!’’ W = (kids, play, in, the, par

Prosody in the first row would be appropriate in response to the quest

be appropriate in response to ‘‘What do kids do on Saturday?’’ Prosod

in column 3.
ing style, it can be shown that the different

transcribers of the Radio Speech Corpus agree

on break index with 95% inter-transcriber agree-

ment (Ostendorf et al., 1995; Pitrelli et al., 1994).

Presence versus absence of pitch accent is tran-
scribed with 91% inter-transcriber agreement.

Some accent label distinctions are more problem-

atic than others: the L* versus H* distinction is

quite robust, while the L + H* versus L* + H dis-

tinction is subject to considerable inter-transcriber

disagreement (Ostendorf et al., 1995).

2.2. Acoustic and articulatory correlates

of prosody

The phrasal prominences and boundaries we

propose to model, described above, are signaled

in part by pitch events that can be identified

through analysis of the variation in fundamental

frequency of the acoustic signal. In addition, pro-

sodic phrase boundaries and phrasal prominence
are also marked by changes in the relative timing

of the movements of different articulators, which

cause a variety of linked changes in the acoustic

signal.

First, durations change. Wightman et al. (1992)

found that the average normalized duration of

phonemes in the rhyme of the syllable preceding

a phrase boundary increases monotonically as a
function of the depth of the boundary.

Second, syllables with phrasal prominence tend

to be produced with higher energy than surround-

ing syllables. A number of studies have found that,

in spontaneous or conversational speech, phrasal

prominence is more robustly cued by changes

in duration and energy than it is by changes in

F0 (e.g., Batliner et al., 1997; Greenberg and
ToBI prosodic tag string

k) P = (3 H*L–, 1, 0, 1, 4 H*L–L%)

k) P = (1, 3 H*L–, 0, 1, 4 H*H–L%)

k) P = (4 H*L–H%, 3 H*, 0, 1, 4 H*L–L%)

ion ‘‘Who plays in the park?’’ Prosody in the second row would

ic tags recognized in this paper are a subset of those exemplified



422 M. Hasegawa-Johnson et al. / Speech Communication 46 (2005) 418–439
Hitchcock, 2001). Casual observations often sug-

gest that energy distinguished lexically stressed

from unstressed syllables, but when the dimensions

of lexical stress and vowel reduction are separately

controlled, there is no difference in energy between
stressed and unstressed syllables (van Kuijk and

Boves, 1999). Either phrasal prominence or lexical

stress may be cued by more subtle acoustic mea-

surements such as the integral of energy over the

duration of the syllable (Greenberg and Hitchcock,

2001), or spectral tilt (Sluijter et al., 1997).

Third, changes in articulatory timing may allow

consonants to be ‘‘more consonantal’’, in the sense
that they have longer closure durations, and in the

sense that their closures cover a larger area of the

palate (Fougeron and Keating, 1997). Both voiced

and unvoiced stop consonants exhibit longer voice

onset times in pitch accented than in unaccented

syllables (Choi et al., 2003; Cole et al., 2003;

Kim et al., 2004a). Vowel productions are also

more extreme when the syllable has phrasal prom-
inence, but studies differ on the way in which the

extreme production is realized: some studies say

that vowels in prominent syllables are more canon-

ical (Hombert, 1978), in the sense that low vowels

are lower while high vowels are higher; another

study suggests that low vowels and diphthongs

are far more likely than high vowels to be per-

ceived as having phrasal prominence (Greenberg
and Hitchcock, 2001). Taken together, the results

of both consonant and vowel studies suggest that

phrasal prominence in English may be imple-

mented as a form of localized hyperarticulation

(DeJong, 1995), thus, in some yet-to-be-specified

way, consonants are more ‘‘consonantal’’ in a

pitch-accented syllable, while vowels are more

‘‘vocalic’’.

2.3. Recognition of prosody

Much successful previous work in the

automatic recognition of prosody has relied on

an auxiliary matrix of word-level observations,

Y = [y1, . . ., yM], where each entry yi in Y includes

information about the pitch contour and phoneme
durations during the span of time claimed by the

corresponding proposed word wi. Wightman and

Ostendorf (1994) and Kompe (1997) have shown
that it is possible to disambiguate sentences with

identical word strings but different prosody (e.g.

‘‘kids play in the park’’ vs. ‘‘kids, play in the

park!’’) using a criterion of the formbP ¼ argmax pðX ; Y ;Q;W ; P Þ
¼ argmax pðX jQÞpðQjW ÞpðY jPÞpðP jW ÞpðW Þ

ð2Þ
Kompe implements the probability p(YjP) using a

neural network trained to estimate the probability

mass function p(PjW,Y), where

pðP jW ; Y Þ ¼
YM
i¼1

pðpijwi�2;wi�1;wi; yiÞ ð3Þ

Kompe found that when a proposed word string is

correct, the most likely prosody almost always has

a probability p(PjW,Y) very close to 1.0. By elim-

inating from consideration any word string with-
out a likely accompanying prosody, Kompe was

able to improve the computational efficiency of a

large-vocabulary telephone-based dialog system

by a factor of two or three with only small

decreases in the word recognition accuracy.

To build phonetic models that are aware of

prosody, a large prosodically labeled speech data-

base is required. However, hand labeling of pros-
ody is known to be a difficult task even with a

well formulated prosody labeling system (Beck-

man and Elam, 1994). Shriberg and co-workers

(Shriberg and Stolcke, 2004; Vergyri et al.,

2003; Stolcke et al., 1999; Ferrer et al., 2003)

have proposed a different approach that makes

use of acoustic prosodic cues without requiring

explicit prosodic labeling. In their approach,
acoustic prosodic cues (e.g., pitch, energy) are

conditioned over a set of hidden event variables

of interest for rich text transcription, including

sentence and topic boundaries, disfluency mark-

ers, dialog act labels, and talker identity. The hid-

den variables are also usually conditioned on the

recognized word string (or on other prior knowl-

edge, e.g., knowledge of the frequency with which
talker turn changes occur). By combining infor-

mation from the recognized word string and from

acoustic prosodic cues, it is possible to obtain

high-accuracy estimates of the hidden event

variables (Liu et al., 2003; Shriberg and Stolcke,

2004).
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Taylor (2000) demonstrates one of the few pre-

vious systems able to recognize pitch accents

without prior information about word boundary

location. His two-stage prosody recognition sys-

tem first locates pitch events using an HMM, then
labels the pitch events using an analysis-by-syn-

thesis matching strategy. The best reported pitch

event recognition system uses three-state mix-

ture-Gaussian hidden Markov models of each dis-

tinct pitch event label; there are 13 distinct pitch

event labels, including silence and all possible

combinations of four accent levels with three

boundary types. The HMM observes speaker-nor-
malized F0 and delta-F0. Results are scored using

the HTK HResults program, modified so that a

recognized event is considered correct only if it

covers at least 50% of the observation frames

covered by a true pitch event. Under these

constraints, speaker-independent pitch event rec-

ognition correctness on one talker from the Bos-

ton University Radio Speech Corpus is 72.7%,
with a recognition accuracy of 47.7% (25% inser-

tion rate).

Wightman and Ostendorf (1994) and Ostendorf

and Ross (1997) considered the problem of auto-

matically locating pitch accents and intonational

phrase boundaries, given knowledge of syllable

start times and end times, but with limited explicit

use of word sequence information. In their system,
decision-tree models were trained to calculate the

posterior probability of syllable-level prosody

labels given the syllable-timed acoustic features;

Wightman and Ostendorf also made use of N-

gram sequence information. Using these methods,

Wightman and Ostendorf were able to correctly

label the pitch accent status of 84% of words in

an arbitrarily selected test subset of the Radio
Speech Corpus, while Ostendorf and Ross were

able to correctly label 89% of syllables (chance per-

formance in the first task is about 55%, and the

inter-transcriber agreement rate is 95%; chance

levels are somewhat higher in task of Ostendorf

and Ross). Wightman and Ostendorf also consid-

ered the problem of intonational phrase boundary

(IPB) detection, but their system performed poorly
on this task: IPB recognition rate was only 71%,

13% below the chance level of 84%. Their results

confirm that acoustic information alone is insuffi-
cient to automatically label intonational phrase

boundary position.

Cohen (2004) considered a problem comple-

mentary to that of Wightman and Ostendorf: the

problem of recognizing IP boundaries and pitch
accents based exclusively on the word sequence,

with no information at all from the acoustic wave-

form. He compared six types of learning algo-

rithms: three types of tree-based learners, a

boosting algorithm, a neural network with raw

indicator variables at the input, and a neural net-

work with heuristically clustered input variables.

Using data from the Boston University Radio
Speech Corpus, both IP boundary location and

pitch accent location were most accurately pre-

dicted using the neural network with heuristically

clustered input variables: IP boundary location

was recognized with 89.6% accuracy, while pitch

accent was recognized with 83.1% accuracy. Both

systems performed well above chance, and well

above the performance of acoustic-only prosody
recognizers, but also somewhat below the reported

inter-transcriber agreement rates. Cohen suggested

that, in order to achieve the best possible auto-

matic labeling of IPB and pitch accent, a system

should use input information extracted from both

the syntactic features of the word string and the

acoustic-prosodic features of the waveform.

2.4. The Boston University Radio Speech Corpus

Experiments reported in this paper make use of

the Boston University Radio Speech Corpus, one

of the largest speech corpora published with man-

ual prosodic annotations intended for speech tech-

nology experiments (Ostendorf et al., 1995). The

Radio Speech Corpus consists of recordings of
broadcast radio news stories including original

radio broadcasts and laboratory broadcast simula-

tions recorded from seven FM radio announcers (4

male, 3 female). Radio announcers usually use

more clear and consistent prosodic patterns than

non-professional readers, thus the Radio Speech

Corpus comprises speech with a natural but con-

trolled style, combining the advantages of both
read speech and spontaneous speech.

All paragraphs in this corpus are annotated

with the orthographic transcription, automatically
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generated part-of-speech tags, and automatically

generated phone alignments. A large number of

paragraphs are also annotated with prosodic

labels. The prosodic labeling system represents pro-

sodic phrasing, phrasal prominence and boundary
tones, using the ToBI system for American English

(Beckman and Elam, 1994). In addition to the

canonical 7 pitch accent types, the notation ‘‘*?’’

is used to mark a questionable pitch accent (an ac-

cent whose type the transcriber could not discern).

Some transcriptions mark the location of a pitch

accent (as ‘‘*’’) but not its type; most of these seem

to be high or downstepped accents.
The Radio Speech Corpus is one of the few pro-

sodically transcribed corpora for which inter-tran-

scriber agreement statistics are available (Pitrelli

et al., 1994; Ostendorf et al., 1995). For example,

agreement between transcribers on the presence

vs. absence of pitch accent is approximately 91%.

Agreement on the exact type of pitch accent is

somewhat lower. The vast majority of pitch ac-
cents in the Radio Speech Corpus are centered

on a high pitch movement (71%) or a downstepped

pitch movement (25%). Inter-transcriber agree-

ment on the level of phrase break separating two

words is 95%. Inter-transcriber agreement rates

on the type of phrase boundary tone have not been

reported for the Radio Speech Corpus, but our

experience transcribing Switchboard (Yoon et al.,
2004; Godfrey et al., 1992) suggests that, given

the level of break index, boundary-tone disagree-

ments are rare.

Many paragraphs in the Radio Speech Corpus

are prosodically transcribed, but not all. The total

duration of prosodically transcribed data is 3.5 h.
Table 2

The experiments reported in this paper used different train/test partit

trainable parameters of each classifier

Section Algorithm Recognized label T

5 Neural net Pitch accent F

6 HMM Phrase boundary A

7 HMM Words, accent, boundary A

8 Neural net Accent, boundary F

Sections 5 and 8 describe speaker-independent prosodic event detector

using talker labels F1A, F2B, M1B, and M2B. Sections 6 and 7 descri

Those two sections use the same three-way partition of the database:

5% of utterances from all talkers, C = a set with 10% of utterances fr
Transcriptions are not uniformly distributed

among the seven talkers. Nearly half of the pro-

sodically transcribed speech data (about 90 min)

are from one female talker (F2B). Twenty to

30 min of transcribed data are available for each
of four other talkers (F1A, F3A, M1B, and

M2B); very little transcribed data are available

for the other two talkers. In order to train auto-

matic speech recognition systems using these data,

two different methods were used to partition the

data: a ‘‘speaker-independent’’ method for the

training of prosody detection algorithms, and a

‘‘multi-speaker speaker-dependent’’ partition for
the training of speech-to-text algorithms. These

training/test partitions are summarized in Table 2.

The prosodic event detectors described in Sec-

tions 5 and 8 are implemented using classifiers with

a relatively low parameter count: the neural net-

works in Section 5 each have about 700 trainable

parameters, and the hybrid mixture-Gaussian +

neural-network classifier in Section 8 has about
4000 trainable parameters. Using an old heuristic

rule (the number of training tokens per class

should be five times the number of trainable

parameters), it is possible to estimate that the clas-

sifier in Section 5 should be trained using 3500

training tokens per class, while the system in Sec-

tion 8 should be trained using 20,000 tokens per

class. It is possible to obtain nearly sufficient train-
ing corpora for these classifiers using speaker-inde-

pendent partitions of the Radio News Corpus. The

pitch accent detector in Section 5 was trained using

the data from talker F1A (2038 pitch accent to-

kens, or slightly fewer than the recommended

number), and tested using the data from talker
ions of the Radio Speech Corpus, depending on the number of

raining set Development test Test set

1A F2B

+ B C

B C

2B + 3 talkers F1A, M1B, or M2B

s; for those experiments, training and test corpora are described

be multi-speaker speaker-dependent speech recognition systems.

A = a set with 85% of utterances from all talkers, B = a set with

om all talkers.
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F2B (6996 pitch accent tokens). The F2B data are

listed as ‘‘development test’’ data in Table 2 be-

cause they were used to determine the best setting

of a median-smoothing window (see text sur-

rounding Fig. 2). The pitch accent and phrase
boundary detectors described in Section 8 were

trained and tested in a round-robin fashion, mean-

ing that each event detector was trained and tested

three times, and the resulting recognition accura-

cies were averaged. In each experiment, one of

the talkers (F1A, M1B, M2B) was used for devel-

opment testing, and the other two were used for

training; the talker F2B was always part of the
training set. In each of the three round-robin

experiments, the number of pitch accent tokens

in the training corpus was approximately 11,000.

In these experiments, the test speaker is called a

‘‘development test’’ speaker in Table 2 because

the elements of the acoustic observation vector

are selected based on cross-validation.

The HMM-based prosody-dependent speech
recognition systems described in Sections 6 and 7

were trained and tested in a multi-speaker speak-

er-dependent fashion. From the data of each talker

in the Radio Speech Corpus, 85% of all utterances

were selected for training, 5% were selected for

development test, and 10% were selected for eval-

uation testing. The development test set was used

to language model stream weights for the experi-
ments described in Section 7. Section 6 did not

use tunable stream weights, so the development

test set was added to the training corpus. The deci-

sion to train and test in a speaker-dependent fash-

ion rather than a speaker-independent fashion was

based on an estimate of the training database size

required to train a baseline prosody-independent

HMM system with 48 phone models, 3 states/
phone, 3 diagonal-covariance mixtures/state, and

a 39-dimensional observation vector: according

to one very rough estimate, a system with this

description requires 180 min of training data. It

would probably be possible to train and test the

baseline speech recognizer in a round robin fash-

ion, by including six talkers in the training set at

all times, and by reserving the four medium-sized
talkers (F1A, F3A, M1B, M2B) as test databases

one after another, but we have not yet been able

to develop training scripts to implement this test-
ing method. All word error rate results reported

in this paper are therefore multi-speaker speaker-

dependent results (trained and tested using the

same seven talkers) rather than speaker-indepen-

dent results.
All HMM-based training and testing experi-

ments described in this paper made use of the man-

ually generated word and prosodic transcriptions

and the automatically generated phone and part-

of-speech transcriptions provided with the Radio

Speech Corpus. Phone transcriptions were used

to initialize phone models for each baseline pros-

ody-independent HMM, and word transcriptions
were used to re-estimate the prosody-independent

HMM. Prosodic and part-of-speech transcriptions

were used to train the prosody-dependent acoustic

models, the prosody-dependent language models,

and the joint prosodic-syntactic language models.
3. Methods: Overview

The experiments described in this paper are se-

lected, from a large number of our recent pub-

lished and unpublished experiments, in order to

demonstrate the synergy of prosody and speech

recognition. The sections of this paper are ar-

ranged with the intention of demonstrating that

(a) the error rate of prosodic event detection drops
when the word string is known, (b) the speech rec-

ognition word error rate drops when the prosodic

events are known, and (c) if neither the word string

nor the prosodic event tags are known a priori,

then the error rates of both types of recognition

may be reduced by using a simultaneous recogni-

tion paradigm that we call prosody-dependent

speech recognition.

The reduction of word error rate is addressed in

Sections 4 and 7. Section 4 gives a theoretical argu-

ment, demonstrating a condition that must hold in

order for prosody-dependent recognition to reduce

the WER of the recognizer. Section 7 provides

experimental results demonstrating that prosody-

dependent speech recognition can reduce WER

on the Radio Speech Corpus by 12.5% relative.
The reduction of prosodic event detection error

is addressed in Sections 5–8. These sections discuss

prosodic event detection under three conditions:



426 M. Hasegawa-Johnson et al. / Speech Communication 46 (2005) 418–439
no knowledge of the word string (Sections 5 and

6), perfect a priori knowledge of the word string

and phoneme alignment times (Section 8), and

simultaneous recognition of prosody and the word

string with no prior knowledge of either (Section
7).

All of the speech recognition systems described

in this paper are conceptual variants of a core dy-

namic Bayesian network (DBN) model, shown in

Fig. 1. Fig. 1 should be read as a conceptual sum-

mary of all of the speech recognition systems to be

described in Sections 5–8, and not as a literal

implementation guide. In most cases (specifically,
in Sections 6–8), the actual implementation was

designed by compiling the desired sections of

Fig. 1 to an explicit-duration HMM (EDHMM),

and by linking the EDHMM to neural networks

trained to estimate acoustic or language model

probabilities. Further implementation details are

given in the sections that follow.
Fig. 1. A dynamic Bayesian network model of the interaction among

frequency cepstrum. Columns in the figure represent consecutive p

dependent phone’’ can be factored into the phone position in word (l

tags (ai,bi), the phoneme duration (di), and the MFCC and F0 mixtur

factored into an orthographic word label (wm), a set of prosodic tags
The key hidden variables in Fig. 1 are the pros-

ody-dependent word, the prosody-dependent allo-

phone, and the acoustic observation streams. The

prosody-dependent word string may be further

decomposed into an orthographic word string
W = [w1, . . ., wM], a prosodic tag string P =

[p1, . . ., pM], and a syntactic tag string

S = [s1, . . ., sM]. The goal of the systems described

in this paper is to choose an optimal word stringbW or an optimal prosodic tag string bP by maxi-

mizing the modeled posterior probability:

bW ¼ argmax
W

max
S;P

pðW ; S; P ;OÞ ð4Þ

bP ¼ argmax
P

max
W ;S

pðW ; S; P ;OÞ ð5Þ

where O ¼ ½~o1; . . . ;~oT � is the set of all acoustic

observations. As in most large vocabulary speech

recognition systems, Eq. (5) is implemented by
way of an intermediate sequence of phoneme
prosody, words, syntax, phoneme durations, pitch, and the mel-

honeme segments (qi�1,qi,qi+1). The super-variable ‘‘prosody-

i), the ARPABET phone label (qi), the phoneme-level prosodic

e indices. The super-variable ‘‘prosody-dependent word’’ can be

(pm), and a set of syntactic tags (sm).
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labels, Q = [q1, . . ., qL], and phoneme-level pros-

ody tags, [A,B] = [a1,b1, . . . , aL,bL], thus

pðW ; S; P ;OÞ
� max

Q
pðOjQ;A;BÞpðQ;A;BjW ; P ÞpðW ; P jSÞpðSÞ

ð6Þ
Stochastic dependencies among variables are

indicated by arrows in the graph. Thus, for exam-
ple, there are three dashed arrows connecting the

variables ‘‘syntactic tag’’, ‘‘prosodic tag’’, and

‘‘word’’; these arrows are dashed because the

dependencies that they encode are present in some

of the implemented systems, and absent in others.

In formal notation, the lack of an arrow between

‘‘prosodic tag’’ and ‘‘word’’ indicates that these

two variables are conditionally independent of
one another, given knowledge of the syntactic tags.

If the mth word, prosodic tag, and syntactic tag

are denoted as (wm,pm, sm), then the absence of

an arrow between word and prosodic tag implies

the following equation:

pðwm; pmjsm;wm�1; pm�1Þ
¼ pðwmjsm;wm�1Þpðpmjsm; pm�1Þ ð7Þ

Experiments described in Section 7 will show that

the model given in Eq. (7) yields lower WER than

the tested alternatives.

Fig. 1 represents a dynamic Bayesian network

with variable length outputs. The number of centi-

second frames generated by each phone state is

an explicit random variable, dependent on the
phone identity, and dependent on the prosodic

variable ‘‘lengthening’’. The variable ‘‘lengthen-

ing’’ encodes the distinction among different pro-

sodic, syllabic, and word boundary contexts that

may cause lengthening or shortening of phonemes.

Explicit-duration hidden Markov models were

implemented using Ferguson�s algorithm (Fergu-

son, 1980); the HTK extensions are posted at
http://www.ifp.uiuc.edu/speech/software/.
4. Synergy of acoustic and syntactic models of

prosody

Katagiri et al. (1998) have shown that the ex-

pected sentence error rate (SER) of a speech recog-
nizer can be written as a non-linear function of the

log likelihood difference between the true word

sequence, WT, and all competing false word

sequences bW i. The expected value of SER is given

as:

E½SER� ¼ EW T ;O uðlogmax
i

giÞ
� �

ð8Þ

where u(x) is the unit step function, and gi is

gi ¼
pðO; bW iÞ
pðO;W T Þ

¼ pðOj bW iÞ
pðOjW T Þ

� pð bW iÞ
pðW T Þ

ð9Þ

The expected value of word error rate (WER)

can be written in a form similar to Eq. (8), but only
if several intermediate terms and functions are first

defined. Let WT = [wT1, . . ., wTM] be the correct

transcription, while bW i ¼ ½bwi1; . . . ; bwiM � is the ith

incorrect transcription (among all possible incor-

rect transcriptions). In order to account for inser-

tions and deletions, either wTm or bwim may be

NULL; the number of non-NULL words in the

correct transcription is MT 6M. Let OTm be the
sequence of observation vectors aligned with wTm

in the maximum-likelihood alignment of observa-

tion sequence O with correct transcription WT;

likewise, Oim is the observation sequence aligned

with bwim. Finally, let WT,1:m = [wT1, . . ., wTm] andbW i;1:m ¼ ½bwi1; . . . ; bwim� be the m-word initial subse-

quences of WT and bW i. Given these definitions,

expected WER is

E½WER� ¼ EW T ;O
1

MT

XM
m¼1

u log maxgeomi;mgim
� �( )

ð10Þ
where

gim ¼ pðOimjbwimÞ
pðOTmjwTmÞ

� pðbwimj bW i;1:ðm�1ÞÞ
pðwTmjW T ;1:ðm�1ÞÞ

ð11Þ

and where the non-linear function maxgeomi,mgim
selects the variable gim whose sequence [gi1, . . .,
giM] has maximum geometric average.

The expected WER of a prosody dependent

speech recognizer can be written in a fashion
similar to Eq. (10), resulting in

E½WER;P �¼EW T ;O
1

MT

XM
m¼1

u log maxgeomi;mg
0
im

� �( )
ð12Þ

http://www.ifp.uiuc.edu/speech/software/
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where

g0im ¼
PbP pðOim; bwim; bP j bW i;1:ðm�1ÞÞPbP pðOTm;wTm; bP jW T ;1:ðm�1ÞÞ

� pðOimjbwim; p̂imÞ
pðOTmjwTm; pTmÞ

� pðbwim; p̂imj bW i;1:ðm�1Þ; bP i;1:ðm�1ÞÞ
pðwTm; pTmjW T ;1:ðm�1Þ; PT ;1:ðm�1ÞÞ

; ð13Þ

PT = [pT1, . . ., pTM] is the sequence of word-syn-

chronized prosodic tags that maximize pðO;W T ;bP Þ, and bP i ¼ ½p̂i1; . . . ; p̂iM � is the prosodic tag
sequence that maximizes pðO; bW i; bP Þ.

One of the goals of this paper is to design a

prosody-dependent speech recognizer with a lower

WER than the prosody-independent baseline sys-

tem. From Eqs. (10) and (12), the objective of

lower expected WER is satisfied if and only if

0 < E½WER� � E½WER; P �

¼ EW T ;O
1

MT

XM
m¼1

u logmaxgeomi;mgim
� ��(

�u logmaxgeomi;mg
0
im

� ��)
ð14Þ

Katagiri et al. (1998) suggested, for analytic pur-

poses, replacing the step function in Eqs. (8)–(14)

with a differentiable function such as a sigmoid

or an identity. Using the sigmoid approximation

(u(x)�1/(1 + e�x)), Eq. (14) can be simplified to

EW T ;O
1

MT

XM
m¼1

maxgeomi;mg
0
im

( )

< EW T ;O
1

MT

XM
m¼1

maxgeomi;mgim

( )
ð15Þ

Eq. (15) demonstrates that the sigmoid approxi-

mation of the expected WER of a prosody-depen-

dent speech recognizer is guaranteed to be less

than that of the baseline system if gim > g0im most

of the time, where the phrase ‘‘most of the time’’
is quantified by the arithmetic average over m of

the non-linear, non-local maxgeom function over

i. We have previously shown (Chen et al. (in press);

Chen and Hasegawa-Johnson (2004)) that mutual

information between the word sequence and the

acoustic signal is increased, by an explicit model
of prosody, under similar circumstances; it is also

possible to show that similar requirements lead

to a decrease in sentence error rate. In all three

cases, error rate is decreased, and mutual informa-

tion is increased, if gim > g0im most of the time,
where the difference among these three criteria is

in the precise definition of the phrase ‘‘most of

the time’’. Re-arranging terms, the condition

gim=g
0
im > 1 may be written

pðpTmjW T ;1:m; PT ;1:ðm�1ÞÞ
pðp̂imj bW i;1:m; bP i;1:ðm�1ÞÞ

 !

� pðOTmjwTm; pTmÞ=pðOTmjwTmÞ
pðOimjbwim; p̂imÞ=pðOimjbwimÞ

� �
> 1 ð16Þ

Eq. (16) expresses the fraction gim=g
0
im as the

product of two terms.

The first term on the left in Eq. (16) expresses

the improvement, due to prosody, in the selectivity

of the language model. It is greater than one, for

example, when the true word sequence is uttered

with a highly predictable prosodic pattern, thus

pð pT mjW T ;1:m; PT ;1:ðm�1ÞÞ > pð p̂i m j bW i;1:m; bP i;1:ðm�1ÞÞ.
This term may be maximized by modeling only

those prosodic labels that are most predictable

from word sequence statistics. In this paper, pro-

sodic labeling will include intonational phrase

boundaries and phrasal pitch accent. Previous re-

search (Kompe (1997); Wightman and Ostendorf

(1994)) has shown that intonational phrase bound-

aries are well predicted by N-gram word sequence
or part-of-speech sequence statistics.

The second term on the left expresses the

improvement, due to prosody, in the selectivity

of the acoustic model. It is greater than one, for

example, when knowledge of the prosodic tag

pTm affiliated with word wTm increases the mod-

eled likelihood of observation sequence OTm, but

none of the possible prosodic tags associated with
word sequence bwim provide any similar acoustic

modeling benefit. This term may be maximized

by selectively modeling only those acoustic fea-

tures whose distributions are well predicted by

prosodic labeling. Beckman (1996) suggests that

speaker-normalized fundamental frequency (f0) is

well predicted by the location of pitch accents, while

Wightman et al. (1992) suggest that normalized
phoneme duration is well predicted by the location
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of intonational phrase boundaries. Cole et al.

(2003) describe the prosody-dependent modifica-

tion of the acoustic–phonetic features as a reliable

effect in the case of some phonemes but not all pho-

nemes, thus prosody-dependent modification of the
distribution of MFCCs will be modeled only for an

empirically selected subset of phonemes.

The meaning of Eq. (15) may therefore be

explained in the following words: E[WER;

P] < E[WER] in their sigmoid approximations if,

most of the time, the correct prosodic sequence is

well predicted by the word transcription, and the

acoustic observation is well predicted by the pros-
ody. Note that it is possible for a prosody-depen-

dent speech recognizer to result in reduced word

error rate even if the acoustic model and the lan-

guage model do not separately lead to improve-

ments. Even if prosody does not improve the

recognition of words in isolation, the likelihood

of the correct sentence-level transcription may be

improved by a language model that correctly pre-
dicts prosody from the word string, and an acous-

tic model that correctly predicts the acoustic

observations from the prosody.
5. Text-independent pitch accent recognition

Is the acoustic signal sufficient to determine
whether or not a syllable is accented? Specifically,

can a machine learning algorithm correctly tran-

scribe the locations of pitch accents without prior

information about word string, part of speech, or

word boundary times? This section considers the

problem of pitch accent recognition as a special

case of the general problem of context-dependent,

non-parametric dynamic contour recognition:
given raw acoustic information as a function of

time (specifically, F0, energy, spectral tilt, and

zero-crossing rate), the task of the recognizer is

to correctly mark the beginning and end time of

every pitch-accented syllable, with no explicit

internal model of words or syntax. The method

proposed here consists of two steps: (1) F0 and

energy contour normalization, and (2) pitch accent
recognition using a time-delay neural network

(TDNN; Waibel et al., 1989) or time-delay recur-

sive neural network (TDRNN; Kim, 1998).
For the experiments presented in this section,

F0 and energy contour normalization consists of

the following steps. First, the fundamental fre-

quency F0(t) and probability of voicing are

extracted using the formant program in Entropic
XWAVES. Second, we eliminated pitch doubling

and halving errors by eliminating F0 that falls into

the doubling and halving clusters of a three mix-

ture Gaussian model whose mixture component

means are restricted to 1/2l, l, and 2l, where l
is the estimated utterance mean F0 (Sönmez

et al., 1998). We then normalize F0 by l and

convert it to log scale:

bF 0ðtÞ ¼ max 0.2; log
F 0ðtÞ
l

þ 1

� �� �
. ð17Þ

Eq. (17) is intended to mimic Fujisaki�s
logðf0=min f0Þ parameterization (Fujisaki and Hir-

ose, 1984; Hirai et al., 1997); in our experiments we

found that estimates of the mean pitch are less sen-

sitive to pitch tracking errors than estimates of the

min f0, thus we find that Eq. (17) is less sensitive to

pitch tracking errors than Fujisaki�s parameteriza-

tion. To eliminate unreliable bF 0 measures, those
with probabilities of voicing smaller than a heuris-

tic threshold are replaced by the linear interpolated

values eF 0 based on the bF 0 that have probabilities of

voicing greater than the threshold. Similarly, en-

ergy is normalized using

eE0ðtÞ ¼ max �3; log
E0ðtÞ
g

� �� �
; ð18Þ

where g is the utterance maximum energy. The

clipping thresholds (0.2 for bF 0ðtÞ, �3 for eE0ðtÞ)
were chosen experimentally for optimum results.

Pitch accent recognition is implemented using

hidden Markov models (HMM), time-delay neural

networks (TDNN), and time-delay recursive neu-

ral networks (TDRNN). All recognition architec-

tures view a two-dimensional observation once

per 10 ms frame, consisting of ½eF 0ðtÞ; eE0ðtÞ�, where
t is the frame index. The TDNN is configured with

32 input units, observing 2 input streams at each of
16 frames, specifically ½eF 0ðt � 15Þ; eE0ðt � 15Þ; . . . ;eF 0ðtÞ; eE0ðtÞ�. The TDRNN is configured with only

28 input units, observing ½eF 0ðt � 13Þ; eE0ðt � 13Þ;
. . . ; eF 0ðtÞ; eE0ðtÞ�. In addition to time delays at the

input, the TDRNN also has a recursive long-term
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Fig. 2. Pitch accent detection errors: deletions vs. insertions, for

three pitch accent recognizers operating with no explicit model

of the word sequence. TDRNN = time-delay recursive neural

network, TDNN = time-delay neural network, HMM = five-

class mixture-Gaussian hidden Markov model.

430 M. Hasegawa-Johnson et al. / Speech Communication 46 (2005) 418–439
context node with 2 streams · 18 time delays = 36

units. The TDNN uses one hidden layer with 20

hidden units; the TDRNN uses two hidden layers,

the first containing 10 units, the second containing

only 2 units. The TDRNN�s recursive long-term
context nodes are direct copies (without modifica-

tion) of previous activation levels in the second

hidden layer of the network; outputs of the long-

term context node are observed by the first hidden

layer. The TDNN has a total of 742 trainable

parameters; the TDRNN has a total of 696 train-

able parameters. Both neural networks were

trained to imitate a ‘‘target function’’ that was
set to 1.0 during the sonorant portion of every syl-

lable transcribed with a pitch accent, and was set

to 0.0 during all other frames. The networks were

trained using all of the transcribed speech data (67

paragraphs containing 2078 pitch accents) from

one female speaker (F1A), and tested with all of

the transcribed speech data (164 paragraphs con-

taining 6996 pitch accents) from another female
speaker (F2B). About 90% of all accented syllables

are aligned with a high pitch (H* or !H*), about

5% are aligned with a low pitch (L*), and about

5% were considered questionable by the transcrib-

ers (?*).

As a baseline, the neural network-based pitch

accent recognizers were compared to an HMM-

based recognizer, built using five three-state
HMMs. These five HMMs each model a subset

of the nine accent types used in the Radio Speech

Corpus, as follows: the H* model represents accent

types (H*, L + H*), the !H* model represents ac-

cent types (!H*, L + !H*, H + !H*), the L* model

represents accent types (L*,L* + H), the ?* model

represents ?* accents, and the UA model repre-

sents unaccented syllables (the test data, from
speaker F2B, included a number of pitch accents

whose type was not marked, and which were there-

fore labeled with a bare ‘‘*’’; the training data

from speaker F1A contained no such labels). The

observation PDF in each state is a 10-component

diagonal-covariance mixture Gaussian PDF with

a six-dimensional feature vector comprisingeF 0ðtÞ, eE0ðtÞ, and their deltas and delta-deltas.
The HMMs have 393 trainable parameters each,

for a total of 2358 trainable acoustic parameters.

Pitch recognition for the HMM (but not the
MLP or TDRNN) is also constrained by a bigram

pitch-event language model, for a total of
2358 + 5 · 4 = 2398 trainable parameters.

All three recognizers (TDNN, TDRNN, and

HMM) were trained using data from one female

talker in the Radio Speech Corpus (F1A), and

tested using data from a different female talker

(F2B), thus all three systems were tested as speak-

er-independent, gender-dependent pitch accent

detectors. All three systems produced an estimate
of the probability of pitch accent in every frame;

the raw probabilities produced by each classifier

were then median smoothed in order to compute

the final classifier output. By adjusting the length

of the median smoothing window, it is possible

to tune the classifier in order to trade off pitch ac-

cent insertions versus deletions. Fig. 2 shows dele-

tion rate as a function of insertion rate for all fully
trained recognizers. Equal error rate of the

TDRNN is 10.2%, corresponding to less than

20% of words incorrectly labeled.
6. Text-independent intonational phrase boundary

recognition

Intonational phrase boundaries are signalled by

at least three types of cues: increased duration of
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phonemes in the rhyme of the phrase-final syllable

(Wightman et al. (1992)), a characteristic F0 move-

ment called a boundary tone (Beckman and Elam

(1994)), and increased glottalization of the phrase-

initial phonemes (Dilley et al. (1996)). This section
considers, in particular, the use of increased pho-

neme duration as a cue for the detection of intona-

tional phrase boundaries. If phoneme boundaries

and phoneme labels are available, it is possible to

use duration cues directly; methods that require

pre-existing segment boundaries have been consid-

ered by Wightman and Ostendorf (1994) and by

Ostendorf and Ross (1997). If phoneme bound-
aries and phoneme labels are not available, it is

necessary to simultaneously recognize the pho-

neme string and the relative lengthening of pre-

boundary phonemes.

In a left-to-right hidden Markov model, the

dwell time di of state i is an implicit random vari-

able with a geometric PMF, i.e.,

pðdiÞ ¼ ð1� aiiÞaiidi�1 ð19Þ

where aii is the state�s self-loop probability. If a

hidden Markov model is composed of N consecu-
tive states, all of which have the same self-loop

probability a11 and with no skipping of states, then

the total dwell time D = d1 + � � � + dN of the N-

state model is a random variable with a gamma

PDF, given by

pðDjNÞ ¼ ðD� 1Þ!
ðN � 1Þ!ðD� NÞ! a

D�N
11 ð1� a11ÞN ð20Þ

Crystal and House (1988) demonstrated that, if

N is chosen to fit the distribution of phoneme

durations observed in a large corpus, Eq. (20)

can be an arbitrarily accurate model of true pho-

neme durations. In practical speech recognition

systems, however, N is usually fixed at a small

number such as N = 3.

Ferguson (1980) demonstrated an efficient
training algorithm for an explicit-duration hidden

Markov model (EDHMM), also known as a semi-

Markov model. If S = [s1, . . ., sN] are the

EDHMM state variables associated with phoneme

q, and assuming that states in the model may not

be skipped, then Ferguson�s algorithm efficiently

computes the following probability:
pð~o1; . . . ;~oT jqÞ ¼
YN
i¼1

pðdi ¼ t̂i ��tijsiÞ
Ŷti
t¼�ti

pð~otjsiÞ

ð21Þ

where �ti and t̂i are the begin time and end time of

state si, and ~ot are the associated observation vec-

tors. In previous work Chen et al. (in press), we
demonstrated equations extending Ferguson�s
method to the Viterbi algorithm, implemented an

EDHMM token-passing algorithm as an extension

to HTK (the hidden Markov modeling toolkit;

Young et al. (2002)), and demonstrated that these

extensions may be used to model phrase-final

lengthening at the end of intonational phrases.

In order to model phrase-final lengthening of
individual phonemes, it is necessary to condition

the state durations di on a prosodic context vari-

able. In experiments reported here, the prosodic

context variable may take on two different values:

b 2 {phrase-final,non-final}. In order to limit the

complexity of the recognizer, we assume that only

duration depends on b; given duration, the cepstral

and other observation vectors are independent of
b. The resulting observation PDF is given by

pð~o1; . . . ;~oT jq; bÞ ¼
YN
i¼1

pðdi ¼ t̂i ��tijsi; bÞ
Ŷti
t¼�ti

pð~otjsiÞ

ð22Þ

In a prosody-dependent EDHMM, the depen-

dence of duration on prosody is implemented

explicitly, exactly as shown in Eq. (22). In a pros-

ody-dependent HMM, the dependence of duration

on prosody is implemented implicitly, by giving

each state a self-loop probability aii that depends

on prosodic context, while the output vector prob-

abilities pð~otjsiÞ are independent of prosody.
Can intonational phrase boundaries be recog-

nized on the basis of phoneme durations alone,

with no information about word content? Table

3 gives results using both an HMM and an

EDHMM; the results suggest that intonational

phrase boundaries cannot be accurately recog-

nized based purely on phoneme-level acoustic

information. The baseline models, in both cases,
are three-state left-to-right hidden Markov mod-

els with three Gaussian mixtures per state. The



Table 3

Recognition error rate of intonational-phrase boundary-depen-

dent allophones (top row) and of monophones (bottom row) in

the Radio Speech Corpus

HMM EDHMM

Prosody-dependent

allophone error rate (%)

75.4 74.6

Monophone error rate 49.0 48.1
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models represent 96 prosody-dependent allo-

phones: each of the 48 SPHINX monophones

may occur in either intonational-phrase-final

context or in phrase-non-final context. The

phrase-final and non-final allophones of each

phoneme share the same MFCC distributions

pð~otjsiÞ; only the duration distributions p(dijsi,b)
depend on prosodic context. Models are trained
using an arbitrarily selected 90% of the speech

data in the Radio Speech Corpus, and are tested

on the remaining 10%; training and test data con-

tain the same talkers (recall that there are only

seven talkers in the Radio Speech Corpus). Table

3 shows the results of four experiments. Mono-

phone recognition accuracy is 51.0% using an

HMM, and 51.9% using an EDHMM; these re-
sults are somewhat lower than the 73.7% mono-

phone recognition accuracy we achieved using a

similar HMM system on the TIMIT corpus

(Omar and Hasegawa-Johnson, 2003), suggesting

that the Radio Speech style is more difficult to

recognize than the read speech in the TIMIT cor-

pus. When we try to simultaneously correctly

label both the monophone and the intonational
phrase boundary position, accuracy drops to

24.6% with the HMM, and 25.4% using the

EDHMM. Error analysis of these results suggests

that many errors involve errors of both intona-

tional phrase context and phoneme label: for

example, a phrase-final short vowel, such as /IH/,

may be mistaken for a corresponding non-final

long vowel, such as /IY/. From these results, it ap-
pears that automatic recognition of intonational

phrase boundaries requires some sort of con-

straint on the possible ordering of phonemes.

The next two sections will consider two such con-

straints: first, the simultaneous recognition of

words and prosody, and second, recognition of
phrase boundaries given prior knowledge of word

and phoneme labels and alignment times.
7. Simultaneous recognition of words and prosody

The relationship among syntax, prosody, and

the word string is modeled in our system by a

tagged language model. A tagged language model

is an estimate of the probability p(wm,pm, smjhis-
tory) where wm is the mth word in the sentence,

and pm and sm are its prosodic and syntactic tags,

respectively. The amount of prosodically labeled
data in the English language is not nearly sufficient

to create a reliable maximum likelihood estimate

of p(wm,pm, smjhistory), therefore we have experi-

mented with three methods for estimating the

language model probability: a backed-off prosodi-

cally-labeled bigram (with no encoding of syntax),

and two factored language models.

A prosody-dependent bigram is an estimate of
p(wm,pmjwm�1,pm�1). The prosodic label pm carries

two types of information: the pitch accent status of

word wm, and the position of wm within an intona-

tional phrase. There are eight possible settings of

pm: a word may be accented or unaccented; the

same word may be phrase-initial, phrase-final,

phrase-medial, or it may be a one-word intona-

tional phrase (both phrase-initial and phrase-
final). A prosodically tagged word may be encoded

in the form WAB, where W is the word label, A

takes the values ‘‘a’’ or ‘‘u’’ (accented or unac-

cented), and B takes the values ‘‘i,m,f,o’’ (initial,

medial, final, one-word phrase). The sequence

[pm�1,pm] takes on jPj2 = 64 possible values, so in

theory, a prosody-dependent bigram model learns

64 times as many parameters as a prosody-inde-
pendent bigram model. In practice, most possible

combinations of wm and pm never occur, so their

probabilities are estimated by backing off to 1-g

and 0-g (uniform) distributions; in our experi-

ments, the actual parameter count of a prosody-

dependent bigram model is slightly less than three

times that of a prosody-independent bigram.

An empirically superior estimate of the pros-
ody-dependent bigram probability may be trained

by explicitly modeling the relationship between the

prosodic tag, pk, and the syntactic tag, sk Chen and



Table 4

Word error rate (WER), accent error rate (AER), and

intonational phrase boundary error rate (BER, in percent) with

six different combinations of acoustic model (AM) and

language model (LM)

AM LM WER AER BER

PI PI 24.8 44.6 15.6

PD PI 24.0 45.9 15.0

PI PD bigram 24.3 23.1 14.5

PD PD bigram 23.4 20.3 14.3

PD PD semi-factored 21.7 20.3 14.2

PD PD factored 22.9 19.7 13.4

PI = prosody independent (baseline), PD = prosody dependent.

Accent and boundary error rates of the system with no prosody

dependence are at chance.
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Hasegawa-Johnson (2003). The syntactic tag sk
specifies the part of speech of word wk, and during

second-pass decoding (given a complete sentence

hypothesis), may also specify the position of word

wk relative to syntactic phrase and clause bound-
aries. By explicitly modeling syntactic tags, the

prosody-dependent bigram probability may be

written as

pðwj; pjjwi; piÞ ¼
X
sj;si

pðwj; pj; sj; sijwi; piÞ ð23Þ

p(wj,pj, sj, sijwi,pi) is proportional to the bigram

probability of a syntactically and prosodically
tagged vocabulary. This tagged bigram probability

may be computed as

pðwj; pj; sj; sijwi; piÞ
� pðpjjsj; si; piÞpðsj; sijwj;wiÞpðwjjwi; piÞ ð24Þ

The approximation in Eq. (24) is valid if we as-

sume that, first, prosody is independent of the

word string given knowledge of syntax (reasonable

because neither side of the equation has any expli-

cit representation of dialog context), and second,

that the syntactic tags are independent of prosody

given knowledge of the word string (reasonable
except for those cases when prosody may be used

to resolve syntactic ambiguity, e.g. Price et al.

(1991)). Under these assumptions, the tagged bi-

gram probability factors into three terms. The first

term, p(pjjsj, si,pi), may be robustly estimated from

a relatively small corpus, because the syntactic tag-

set and the prosodic tagset are both much smaller

than the vocabulary. The second term, p(sj, sijwj,
wi), is the probability that a word sequence (wi,wj)

implements syntactic tag sequence (si, sj). Compu-

tation of this probability is simplified by appropri-

ate choice of the syntactic tagset. During first-pass

recognition, the syntactic tag si encodes only the

part of speech of word wi. In most cases, the word

sequence (wi,wj) uniquely determines the POS

sequence (si, sj); the few common exceptions can
be robustly estimated from a large text database

with manual or automatic POS tags. During sec-

ond-pass recognition, in an N-best rescoring para-

digm, it is possible to assume that the recognizer is

computing the prosody-dependent and syntax-

dependent probability of a complete sentence
transcription, W = [w1, . . ., wM]. Given a complete

transcription, it is possible to compute the maxi-

mum likelihood phrase-level parse of the sentence

using a context-free grammar, and to augment the

syntactic tag si with information about the posi-
tion of the word in its surrounding phrase and

clause. Like POS, this new syntactic information

may be treated, by the prosody-dependent lan-

guage model, as information uniquely determined

by the hypothesized word sequence (wi,wj).

The third term in Eq. (24), p(wjjwi,pi), is a pros-

ody-dependent semi-bigram probability. We have

tested two variants of Eq. (24): one in which the
probability p(wjjwi,pi) is estimated directly from

the Radio Speech Corpus, using backed-off ML

estimation, and one in which the probability is

estimated using the following approximation:

pðwjjwi;piÞ ¼
pðpijwj;wiÞpðwjjwiÞ

pðpijwiÞ

�
P

si;sj
pðpijsi; sjÞpðsi; sjjwi;wjÞpðwjjwiÞP

wj

P
si;sj

pðpijsi; sjÞpðsi; sjjwi;wjÞpðwjjwiÞ
ð25Þ

Table 4 describes performance of six different

recognizers, each based on 48 monophone HMMs,

each composed of an MFCC observation stream

(three-mixture Gaussian) and a pitch observation

stream (Gaussian), with explicit representation of
duration probability density. Each row was cre-

ated by training the named recognizer on about

90% of the ToBI-transcribed data in the Radio

Speech Corpus (six talkers), and testing on the
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remaining 10% (from the same six talkers). During

testing, each recognizer output its best estimate of

the complete lexical and prosodic transcription of

the utterance. Word error rate was computed by

comparing the lexical transcription to a reference
using the program HResults, without considering

the prosodic transcription; accent and boundary

recognition error rates were computed by ignoring

the lexical transcription. The system in the first

row has no explicit representation of prosody. Ac-

cent and boundary recognition error rates of the

first system are at chance for this database: 45%

of words in this database are unaccented (55%
are accented), and 16% are phrase-final. In the sec-

ond system, the F0 stream is accent-dependent and

the duration PMF is phrase-position dependent;

all systems in this table use a prosody-independent

MFCC stream. The third system uses a prosody-

dependent bigram language model with no model

of the acoustic correlates of prosody. The fourth

system uses a prosody-dependent bigram, plus ex-
plicit models of accent-dependent pitch variation

and phrase-final lengthening. The fifth system uses

a semi-factored language model, meaning that

p(wj,pjjwi,pi) is factored, but p(wjjwi,pi) is not

(Eq. (24)) is used, but not Eq. (25). The last system

uses both Eqs. (24) and (25).

The results of Table 4 indicate that word

error rate is only significantly improved if a
prosody-dependent acoustic model and a pros-

ody-dependent language model are combined.

Prosody-dependent language modeling, alone, is

sufficient for better-than-chance recognition of ac-

cents and boundaries; a prosody-dependent acous-

tic model, alone, is insufficient for any type of gain.

The last two rows of Table 4 present results

obtained using the semi-factored and factored
bigram language models. The word perplexities of

the bigram, semi-factored, and factored language

models, using the same test corpus as in Table 4,

are 60, 54, and 47, respectively. The semi-factored

model has significantly lower WER than the base-

line bigram (21.7% vs. 23.4%), but not significantly

lower boundary error rate (14.2% vs. 14.3%) or ac-

cent error rate (20.3% vs. 20.3%). The factored
model has significantly improved boundary recog-

nition error (13.4% vs. 14.3%), but not significantly

improved WER (22.9% vs. 23.4%).
8. Prosody recognition given known word

transcription

Consider the problem of recognizing the se-

quence of prosody tags, P = [p1, . . ., pM], given a
sequence of word labels W = [w1, . . ., wM] with

known alignment times. The optimal prosodic

tag sequence is the sequence bP that maximizes

the recognition probability:

bP ¼ argmaxP
YM
m¼1

pðymjwm; pmÞpðpmj/mðW ÞÞc; ð26Þ

where ym is the sequence of acoustic features that
provide information about prosodic tag pm (possi-

bly including delta and delta-delta features),

/m(W) is a function that describes all the informa-

tion in W that may affect the prediction of pm, and

c is the language model stream weight. Assuming

the dependence of prosody on word strings is

localized in a window of n words and is described

by the syntactic roles of the words (primarily
parts-of-speech) instead of the words themselves,

then

/mðW Þ ¼ Sm ¼ ðsm�nþ2; sm�nþ3; . . . ; smþn�1Þ ð27Þ
where Sm is used to represent the set of syntactic

information that affects the prediction of pm. In

the experiments in this section, sm includes part-
of-speech (ground truth for part-of-speech is pro-

vided by automatic transcriptions distributed with

the Radio Speech Corpus), and information about

syntactic phrase boundaries (syntactic phrase

structure was estimated by applying Charniak�s
stochastic CFG parser Charniak (1994) to the

orthographic transcriptions provided in the Radio

Speech Corpus).
The probability p(ymjwm,pm) in Eq. (26) can be

further expanded to the phoneme level:

pðymjwm;pmÞ

¼
X

Qm;Am;Bm

YNm

i¼1

pðyijqi;ai;biÞpðQm;Am;Bmjwm;pmÞ
 !

ð28Þ

where p(Qm,Am,Bmjwm,pm) is a pronunciation

model that computes the probability of a phoneme

string Q ¼ ½q1; . . . ; qNm
� and the accompanying



Table 5

Average accent, boundary and accent/boundary combined

error rates (%) for acoustic model only (AM only), language

model only (LM only) and acoustic model language model

combined systems on the leave-one-speaker-out task on the

Radio Speech Corpus

Accent Boundary Acc. Bnd.

combined

AM only 23.42 31.77 49.94

LM only 17.33 9.91 23.19

Combined 16.09 6.93 21.58
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lengthening variables Bm ¼ ½b1; . . . ; bNm � and pho-

neme stress labels Am ¼ ½a1; . . . ; aNm � given prosody

dependent word token (wm,pm).

For simplicity, assume that the acoustic–pro-

sodic features yi are computed in the local context
of each phoneme, possibly including information

from a fixed window of frames on either side.

Acoustic prosodic features include functions of

the normalized pitch eF 0ðtÞ, normalized energyeE0ðtÞ, and absolute phoneme duration. Absolute

phoneme durations are computed using forced

alignment of a prosody-independent hidden Mar-

kov model of the known word. eF 0ðtÞ and eE0ðtÞ
are computed using the methods described in Sec-

tion 5. After normalization, a group of five fea-

tures are computed as the base feature vector ~xi:
(1) phoneme duration, (2) average phoneme dura-

tion over a window of three phonemes, (3) averageeE0ðtÞ over a window of three phonemes, (4) the

delta of the three-phone-average of the phoneme-

wise mean eF 0ðtÞ, and (5) the delta of item number
(4). There features are designed based on test and

trial, and are found to give the best performance

among a set of around 15 candidate features. After
~xi is computed, the vector is rotated using principle

component analysis (PCA) so that it can be better

modeled by a diagonal covariance Gaussian PDF.

The delta of the rotated feature vectors are

attached to make up a 10-dimensional feature vec-
tor ~yi for each phoneme segment. The acoustic

observation PDF p(yijqi,ai,bi) is modeled using a

mixture of diagonal-covariance Gaussians.

The language model p(pmj/m(W)) is imple-

mented using a multilayer perceptron (MLP).

The input nodes of the MLP observe a large num-

ber of binary and integer-valued variables encod-

ing syntactic features of the five words
[wm�2, . . ., wm+2], and including in particular the

syntactic features identified as most useful in a pre-

vious study by Cohen (2004). The MLP has four

output nodes, trained to estimate the four a poste-

riori probabilities p(pm = unaccented,non-

finalj/m(W)), p(pm = accented, non-finalj/m(W)),

p(pm = unaccented, phrase-finalj/m(W)), p(pm =

accented, phrase-finalj/m(W)). The vector /m(W)
encodes, for each word wi 2 [wm�2, . . ., wm+2], the

part of speech (POS) of wi, the number of syntactic

phrases or clauses that end after word wi, and the
number of syntactic phrases or clauses that begin

on word wi. There are 33 POS tags, including

‘‘SIL’’ (silence), and the 32 Penn Treebank POS

tags. The number of phrase and clause boundaries

coincident with each word is computed by parsing
the word string using Charniak�s probabilistic con-
text-free parser Charniak (1994). POS is encoded

using 33 binary indicator variables per word, for

a total of 165 binary indicator variables. The num-

ber of phrase boundaries ending and starting on

each word are encoded in the form of two inte-

ger-valued features per word, for a total of 10 inte-

ger-valued features, thus the MLP has a total of
175 input nodes.

Data used in the experiments are extracted from

4 speakers in the Radio Speech Corpus: F1A, F2B,

M1B and M2B. For each experiment, data from

one speaker are used for test, and the other three

are used to train models. The directory F2B is

never left out because it contains the most training

data. Results are given in Table 5.
As shown in Table 5, the acoustic model only

(AM only) error rate (23.42%) is somewhat worse

than the error rate achieved by Wightman and

Ostendorf on a similar task (Wightman and Osten-

dorf, 1994), and is also slightly worse than the best

results achieved using our TDRNN acoustic-only

pitch accent detector (about 20%: Fig. 2); we have

not yet combined the TDRNN with the pitch ac-
cent recognition system described here. All three

sets of AM-only error rates (those in Table 5, those

in Fig. 2, and those in Wightman and Ostendorf,

1994) are higher than the LM-only error rates

cited in Table 5 (17.33%). The combination of both

acoustic and language model information results in

a pitch accent error rate comparable to the best
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rates reported in previous studies of this corpus

(16.09%, comparable to 16% reported in Wight-

man and Ostendorf, 1994).

Intonational phrase boundary recognition accu-

racy using only the acoustic model is considerably
worse than chance (31.77%, compared to a chance

level of 16%). Using only language model informa-

tion, on the other hand, Table 5 achieves an into-

national phrase boundary recognition error rate

(9.91%) slightly but not significantly lower than

that previously reported by Cohen (10.9%, Cohen,

2004), and considerably better than chance. The

final intonational phrase boundary detection error
rate (6.9%), achieved using both acoustic and lan-

guage model information, appears to be the lowest

error rate reported for this task, and closely approx-

imates the inter-transcriber disagreement rate

(reported to be about 5%, Ostendorf et al., 1995).
9. Discussion and conclusions

In this paper, a prosody dependent speech rec-

ognizer that models word and prosody in a unified

probabilistic framework is proposed. A theoretical

analysis is provided, showing that prosody depen-

dent recognition can decrease the expected word

error rate of a speech recognizer by utilizing the

interaction between the acoustic model and lan-
guage model. Four types of experiments are de-

scribed. First, experiments are described that

detect pitch accents with no knowledge of the

words, phones, or phone alignment times in the

utterance. The best such system, using a time-delay

recursive neural network with fewer than 700

trainable parameters, achieves an equal error rate

of close to 10% on a gender-dependent, speaker-
independent accent recognition task. The second

set of experiments attempts to recognize intona-

tional phrase boundary position using knowledge

of phonemes and phone alignment times, but with

no information about the organization of phones

into words; the resulting boundary error rates

are worse than chance. The third set of experi-

ments demonstrate that an explicit representation
of prosody can reduce the word error rate of

a multi-speaker speaker-dependent speech rec-

ognizer, but that statistically significant WER
reductions depend on the simultaneous use of both

a prosody-dependent acoustic model and a

prosody-dependent language model. Additional

improvements, in both perplexity and WER, can

be obtained using a semi-factored language model,
in which the relationship between prosody and the

word sequence is at least partly mediated by syn-

tactic tags. Finally, the fourth set of experiments

uses complete knowledge of both the acoustics

and the word string in order to derive the best pos-

sible prosodic transcription of an utterance. A

speaker-independent intonational phrase bound-

ary error rate of only 6.9% is achieved; this result
is below the boundary error rates reported in other

studies, and approximates quite closely the lowest

reported inter-transcriber disagreement rates.

The experiments reported in this paper support

the following two claims. First, accurate detection

of pitch accents and intonational phrase bound-

aries requires information about word and pho-

neme alignment times, obtained either from prior
knowledge (as in Section 8) or by simultaneously

recognizing the words and prosody of the utter-

ance (as in Section 7). Second, it is possible for

an explicit model of prosody to reduce the word

error rate of an automatic speech recognizer.

Taken together, these results suggest that there is

no such thing as a prosody-independent allophone

in the Radio Speech Corpus. The spectral distribu-
tion of every allophone is adjusted to fit a particu-

lar prosodic context, therefore knowledge of the

prosodic context aids recognition of the allophone,

and conversely, knowledge of the allophone aids

recognition of the prosody.

The immediate utility of the results presented in

this paper is limited by the relatively small size of

the speech corpus, and by the consequent use of
a speaker-dependent rather than a speaker-inde-

pendent speech recognizer. At present, there is

no way to know whether these results can be gen-

eralized to larger corpora, to a speaker-indepen-

dent speech recognizer, to speech styles other

than radio speech, or to languages other than Eng-

lish. The methods used in this paper require train-

ing and testing on speech data with manual
prosodic transcriptions. Manual prosodic tran-

scriptions are expensive; to our knowledge, the

3.5-h Radio Speech Corpus is currently the largest
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publicly available English-language speech data-

base with manual prosodic transcriptions.

We are currently pursuing two methods for gen-

eralizing these experiments to other, larger speech

corpora. First, we are experimenting with low-cost
rapid prosodic transcriptions. Of all the distinc-

tions labeled in the ToBI transcription standard,

most speech recognition experiments in this paper

made use of only two binary distinctions: intona-

tional phrase-final vs. non-final, pitch accented

vs. unaccented. Transcribers report being able to

make these two distinctions very rapidly. Experi-

ments are currently under way to determine
whether rapid transcriptions of these two distinc-

tions are accurate (high inter-transcriber agree-

ment) and phonologically meaningful. If so, it

may be possible to rapidly label larger speech

corpora.

Second, we are experimenting with statistical

and machine learning methods that may be able

to generalize prosodic knowledge across speech
corpora. In a factored acoustic model, for exam-

ple, it is possible to train the different components

of the acoustic model on different corpora. The

pitch stream may be amenable to training using

prosodically labeled data, while the MFCC stream

is trained using a much larger (and perhaps more

task-specific) training corpus. Allophone duration

models may also be amenable to parameterization,
e.g., by modeling the effect of phrase-final length-

ening using a manner-class-dependent time-scaling

operation (Klatt, 1976).

The experimental tests reported in this paper

may be interpreted as an existence proof: under

reasonably favorable conditions (manual tran-

scriptions, speaker-dependent recognition), it is

possible to use explicit models of prosodic allo-
phony and of the interaction between prosody

and syntax to reduce the word error rate of a

speech recognizer, and to reduce the error rate of

automatic prosodic transcription. The task of

our ongoing research is to generalize this result.
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1997. Can we tell apart intonation from prosody (if we look
at accents and boundaries)? In: Proc. ESCA Intonation

Workshop, Athens, pp. 39–42.

Beckman, M., 1996. The parsing of prosody. Language

Cognitive Processes 11 (1), 17–67.

Beckman, M.E., Elam, G.A., 1994. Guidelines for ToBI

labelling. Technical report, Ohio State University. Available

from <http://www.ling.ohio-state.edu/research/phonetics/

E_ToBI/singer_tobi.html>.

Borys, S., 2003. Recognition of prosodic factors and detection

of landmarks for automatic speech recognition, bachelor�s
thesis, University of Illinois at Urbana-Champaign.

Charniak, E., 1994. Statistical Language Learning. MIT Press,

Cambridge, MA.

Chavarria, S., Yoon, T., Cole, J., Hasegawa-Johnson, M., 2004.

Acoustic differentiation of ip and IP boundary levels:

Comparison of L– and L–L% in the switchboard corpus.

In Proc. SpeechProsody, Nara, Japan.

Chen, K., Hasegawa-Johnson, M., 2003. Improving the robust-

ness of prosody dependent language modeling based on

prosody syntax cross-correlation. In: IEEE Workshop on

Automatic Speech Recognition and Understanding

(ASRU).

Chen, K., Hasegawa-Johnson, M., 2004. How prosody

improves word recognition. In: Proc. SpeechProsody, Nara,

Japan.

Chen, K., Borys, S., Hasegawa-Johnson, M., 2003a. Prosody

dependent speech recognition with explicit duration model-

ing at intonational phrase boundaries. In: Proc. EURO-

SPEECH, Geneva, pp. 393–396.

Chen, K., Hasegawa-Johnson, M., Kim, S.-S., 2003b. An

intonational phrase boundary and pitch accent dependent

speech recognizer. In: Internat. Conf. on Syst., Cybernet.,

Intell. (SCI). Orlando, FL.

Chen, K., Hasegawa-Johnson, M., Cohen, A., 2004a. An

automatic prosody labeling system using ANN-based syn-

tactic prosodic model and GMM-based acoustic prosodic

model. In: Proc. ICASSP.

Chen, K., Hasegawa-Johnson, M., Cohen, A., Cole, J., 2004b.

A maximum likelihood prosody recognizer. In: Proc.

SpeechProsody, Nara, Japan.

Chen, K., Hasegawa-Johnson, M., Cohen, A., Borys, S., Kim,

S.-S., Cole, J., Choi, J.-Y., in press. Prosody dependent

speech recognition on radio news. IEEE Trans. Speech

Audio Process.

Choi, H., Cole, J., Kim, H., 2003. Acoustic evidence for

the effect of accent on CV coarticulation in radio news

speech. In: Proc Texas Linguistics Conf. Univ Texas at

Austin.

Cohen, A., 2004. A survey of machine learning methods for

predicting prosody in radio speech. Master�s thesis, Univer-

sity of Illinois at Urbana-Champaign.

Cole, J., Choi, H., Kim, H., Hasegawa-Johnson, M., 2003. The

effect of accent on the acoustic cues to stop voicing in radio

news speech. In: Internat. Conf. Phonet. Sci.

Crystal, T.H., House, A.S., 1988. Segmental druations in

connected-speech signals: Current results. J. Acoust. Soc.

Amer. 83, 1553–1573.

http://www.ling.ohio-state.edu/research/phonetics/E_ToBI/singer_tobi.html
http://www.ling.ohio-state.edu/research/phonetics/E_ToBI/singer_tobi.html


438 M. Hasegawa-Johnson et al. / Speech Communication 46 (2005) 418–439
DeJong, K., 1995. The supraglottal articulation of prominence

in English: Linguistic stress as localized hyperarticulation. J.

Acoust. Soc. Amer. 89 (1), 369–382.

Dilley, L., Shattuck-Hufnagel, S., Ostendorf, M., 1996. Glot-

talization of word-initial vowels as a function of prosodic

structure. J. Phonet. 24, 423–444.

Ferguson, J.D., 1980. Variable duration models for speech. In:

Ferguson, J. (Ed.), Proc. Symp. Applic. Hidden Markov

Models to Text and Speech. Princeton University Press,

Princeton, NJ, pp. 143–179.

Ferrer, L., Shriberg, E., Stolcke, A., 2003. A prosody-based

approach to end-of-utterance detection that does not

require speech recognition. In: Proc. ICASSP. pp. 608–611.

Fougeron, C., Keating, P.A., 1997. Articulatory strengthening

at edges of prosodic domains. J. Acoust. Soc. Amer. 101 (6),

3728–3740.

Fujisaki, H., Hirose, K., 1984. Analysis of voice fundamental

frequency contours for declarative sentence of Japanese. J.

Acoust. Soc. Jpn. 5 (4), 233–242.

Godfrey, J., Holliman, E., McDaniel, J., 1992. SWITCH-

BOARD: telephone speech corpus for research and devel-

opment. In: Proc. ICASSP. pp. 517–520.

Greenberg, S., Hitchcock, L., May 2001. Stress-accent and

vowel quality in the Switchboard corpus. In: NIST Large

Vocabulary Continuous Speech Recognition Workshop,

Linthicum Heights, MD.

Hahn, L., 1999. Native speakers� reactions to non-native stress

in english discourse. Ph.D. Thesis, University of Illinois at

Urbana-Champaign.

Hasegawa-Johnson, M., Cole, J., Shih, C., Chen, K., Cohen,

A., Chavarria, S., Kim, H., Yoon, T., Borys, S., Choi, J.-Y.,

2004. Speech recognition models of the interdependence

among syntax, prosody, and segmental acoustics. In: HLT/

NAACL Workshop on Linguist. Other Higher-Level

Knowledge Speech Process.

Hirai, T., Iwahashi, N., Higuchi, N., Sagisaka, Y., 1997.

Automatic extraction of f0 control rules using statistical

analysis. In: van Santen, J.P.H., Sproat, R.W., Olive, J.P.,

Hirschberg, J. (Eds.), Progress in Speech Synthesis.

Springer-Verlag, New York, pp. 333–346.

Hirschberg, J., Nakatani, C., 1998. Acoustic indicators of topic

segmentation. In: Proc. Internat. Conf. on Spoken Lan-

guage Process.

Hombert, J., 1978. Consonant types, vowel quality and tone. In:

Fromkin, V. (Ed.), Tone: A Linguistic Survey. pp. 77–112.

Katagiri, S., Juang, B.-H., Lee, C.-H., 1998. Pattern recognition

using a family of design algorithms based upon the

generalized probabilistic descent method. Proc. IEEE 86

(11), 2345–2373.

Kent, Netsell, 1971. Effects of stress contrasts on certain

articulatory parameters. Phonetica. 24, 23–44.

Kim, S.-S., 1998. Time-delay recurrent neural network for

temporal correlations and prediction. Neurocomputing 20,

253–263.

Kim, H., Cole, J., Choi, H., Hasegawa-Johnson, M., 2004a.

The effect of accent on acoustic cues to stop voicing and
place of articulation in radio news speech. In: Proc.

SpeechProsody, Nara, Japan.

Kim, S.-S., Hasegawa-Johnson, M., Chen, K., 2004b. Auto-

matic recognition of pitch movements using multi-layer

perceptron and time-delay recursive neural network. IEEE

Signal Process. Lett. 11 (7), 645–648.

Klatt, D.H., 1976. Linguistic uses of segmental duration in

english: Acoustic and perceptual evidence. J. Acoust. Soc.

Amer. 59 (5), 1208–1221.

Kompe, R., 1997. Prosody in Speech Understanding Systems.

Springer-Verlag, Berlin.

Lee, K.-F., Hon, H.-W., 1989. Speaker-independent phone

recognition using hidden Markov models. IEEE Trans.

Acoust., Speech, Signal Process. 37 (11), 1641–1648,

November.

Liu, Y., Shriberg, E., Stolcke, A., 2003. Automatic disfluency

identification in conversational speech using multiple

knowledge sources. In: Proc. EUROSPEECH.

Omar, M.K., Hasegawa-Johnson, M., 2003. Approximately

independent factors of speech using non-linear symplectic

transformation. IEEE Trans. Speech and Audio Process. 11

(6), 660–671.

Ostendorf, M., Price, P., Shattuck-Hufnagel, S., 1995. The

Boston University Radio News Corpus. Linguistic Data

Consortium.

Ostendorf, M., Ross, K., 1997. A multi-level model for

recognition of intonation labels. In: Computing Prosody:

Computational Models for Processing Spontaneous Speech.

Springer-Verlag, Inc., New York.

Ostendorf, M., Shafran, I., Shattuck-Hufnagel, S., Carmichael,

L., Byrne, W., 2002. A prosodically labeled database of

spontaneous speech. In: Proc. ISCA Tutorial Res. Work-

shop on Prosody in Speech Recognition Understand., Red

Bank, NJ.

Pitrelli, J.F., Beckman, M., Hirschberg, J., 1994. Evaluation of

prosodic transcription labeling reliability in the TOBI

framework. In: Proc. Internat. Conf. Spoken Language

Process.

Price, P., Ostendorf, M., Shattuck-Hufnagel, S., Fong, C.,

1991. The use of prosody in syntactic disambiguation. J.

Acoust. Soc. Amer. 90 (6), 2956–2970, Dec.

Ren, Y., Kim, S.-S., Hasegawa-Johnson, M., Cole, J., 2004.

Speaker-independent automatic detection of pitch accent.

In: Proc. SpeechProsody, Nara, Japan.

Shriberg, E., Stolcke, A., 2004. Direct modeling of prosody: An

overview of applications in automatic speech processing. In:

Proc. SpeechProsody.

Silverman, K., Beckman, M., Pitrelli, J., Ostendorf, M.,

Wightman, C., Price, P., Pierrehumbert, J., Hirschberg, J.,

1992. TOBI: A standard for labeling English prosody. In:

Proc. Internat. Conf. Spoken Language Process.

Sluijter, A.M.C., van Heuven, V.J., Pacilly, J.J.A., 1997.

Spectral balance as a cue in the perception of linguistic

stress. J. Acoust. Soc. Amer. 101, 503–513.

Sönmez, K., Shriberg, E., Heck, L., Weintraub, M., 1998.

Modeling dynamic prosodic variation for speaker



M. Hasegawa-Johnson et al. / Speech Communication 46 (2005) 418–439 439
verification. In: Proc. Internat. Conf. Spoken Language

Process., pp. 3189–3192.

Stolcke, A., Shriberg, E., Hakkani-Tür, D., Tür, G., 1999.

Modeling the prosody of hidden events for

improved word recognition. In: Proc. EUROSPEECH,

pp. 307–310.

Taylor, P., 2000. Analysis and synthesis of intonation using the

Tilt model. J. Acoust. Soc. Amer. 107 (3), 1697–1714.

van Kuijk, D., Boves, L., 1999. Acoustic characteristics of

lexical stress in continuous telephone speech. Speech Comm.

27, 95–111.

Vergyri, D., Stolcke, A., Gadde, V.R., Ferrer, L., Shriberg, E.,

2003. Prosodic knowledge sources for automatic speech

recognition. In: Proc. ICASSP.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang,

K.J., 1989. Phoneme recognition using time-delay neural

networks. Trans. Acoust. Speech Sig. Proc. 37,

328–339.
Wightman, C., Ostendorf, M., 1994. Automatic labeling of

prosodic patterns. IEEE Trans. Speech Audio Process. 2 (4),

469–481, Oct.

Wightman, C., Shattuck-Hufnagel, S., Patti Price, M.O., 1992.

Segmental durations in the vicinity of prosodic phrase

boundaries. J. Acoust. Soc. Amer. 91 (3), 1707–1717,

March.

Yoon, T., Chavarria, S., Cole, J., Hasegawa-Johnson, M., 2004.

Intertranscriber reliability of prosodic labeling on telephone

conversation using tobi. In: Proc. Internat. Conf. Spoken

Language Process.

Young, S., Evermann, G., Hain, T., Kershaw, D., Moore, G.,

Odell, J., Ollason, D., Povey, D., Valtchev, V., Woodland,

P., 2002. The HTK Book. Cambridge University Engineer-

ing Department, Cambridge, UK.

Zue, V., Seneff, S., Glass, J., 1990. Speech database develop-

ment at MIT: TIMIT and beyond. Speech Comm. 9, 351–

356.


	Simultaneous recognition of words and prosody in the Boston University Radio Speech Corpus
	Introduction
	Background
	Modeling prosody
	Acoustic and articulatory correlates�of prosody
	Recognition of prosody
	The Boston University Radio Speech Corpus

	Methods: Overview
	Synergy of acoustic and syntactic models of prosody
	Text-independent pitch accent recognition
	Text-independent intonational phrase boundary recognition
	Simultaneous recognition of words and prosody
	Prosody recognition given known word transcription
	Discussion and conclusions
	References


