F0 max and formants (F1, F2) as perceptual cues for naïve listeners’ prominence perception

Yoonsook Mo
Department of Linguistics
University of Illinois at Urbana-Champaign
Defining prosody

- Speech utterances are composed of hierarchically structured phonological phrases.
 - A prosodic boundary marks the phonological phrase juncture and serves to demarcate “chunks” of words.
- Within each utterance, some words or phrases are more prominent than others.
 - Prosodic prominence “highlights” a word or a phrase and conveys its status as focused or discourse-new.
- In this paper, in particular, prominence is of interest.
This talk focuses on the phonetic correlates of **prosodic prominence**, and is part of my larger study of phonetic correlates of prosodic structure in production and perception.
What is the phonetic expression of prominence?

- Phonetic implementation

 Speakers encode prosodic structure through the modulation of phonetic parameters.

- Acoustic correlates of prominence

 - Fundamental frequency (F0)
 - Duration (Fry, 1955 and 1958; Turk and Sawusch, 1996)
 - Intensity (Fry, 1955 and 1958; Kochanski, 2005)
 - Sub-band intensities (Sluijter and van Heuven, 1996; Heldner, 2001 and 2003)
 - Formants
 - Spectral tilt (Fant et al., 2000; Sluijter and van Heuven, 1996)
In my study

I investigate the phonetic encoding of prominence

- **14 vowels** in American English
- in everyday **conversational speech**
- from 38 **ordinary speakers** of American English
- by about 100 **untrained, ordinary listeners**

→ “Prominence” as judged by ordinary listeners, based only on auditory impression. No visual inspection of speech display.
In my study (continued)

- In other work I show duration, intensity and sub-band intensity measures to be important correlates of prominence. (Mo, 2008a and b)

- What effect, if any, does prominence have on F0 and on vowel formants?
 - Intonation
 - Hyper- vs. hypo- articulation
Previous studies

- Fundamental frequency (F0)
 - Height and shape of F0 contours are shown to be as a major correlates of prominence
 - Stressed vs. Unstressed (Lieberman, 1969; Cooper et al., 1985 among others)
 - Pitch accents (Gussenhoven et al., 1997; Hermes and Rump, 1994; Pirrehumbert, 1979; Terken, 1991 and 1994)

- Still controversial
 - Perception of focal status has not changed by gradual addition of F0 rise on non-focused words (Heldner and Strangert, 1997)
 - F0 plays a minor role in the automatic classification of pitch accent (Kochanski, 2005)
Previous studies (continued)

- Vowel quality
 - Acoustic studies (Sluijter and van Heuven, 1996; van Bergem, 1993)
 - Articulatory studies (Beckman et al., 1992; De Jong, 1995; Erickson, 2002; Cho, 2005)
Underlying mechanism

- **Sonority expansion** (Beckman et al., 1992)
 - Under accent, articulators move to increase “sonority”
 - More open vocal-tract

- **Hyperarticulation** (De Jong, 1995; Erickson, 2002)
 - Under accent, phonetic space of phonemic contrast expands
 - Feature distinctiveness is enhanced

- **Combination of sonority expansion and hyperarticulation** (Cho, 2005)
 - Under accent, more open
 - In front/ back dimension, more front or more back
Objectives of this study

- To investigate the phonetic properties that cue prominence in conversational speech by ordinary listeners
 - How does fundamental frequency vary?
 - How are formant structures modified?
- To evaluate which underlying mechanism better describes the phenomenon of prominence, as judged by listeners
A speaker marks a word as prosodically prominent in accordance with its pragmatic value (e.g., focused), position in the phrase, and other factors.

A speaker implements a prominent word with an F0 excursion, and with “enhanced” speech gestures that are longer, larger, or both. These effects are strongest on the lexically stressed syllable.

Listeners perceive a word as prominent based on acoustic evidence of the speaker’s “enhanced” speech gesture.

Therefore, words perceived as prominent will have stressed syllables that are acoustically “enriched”.

- Higher F0
- Higher F1 and more peripheral F2
Experimental Hypotheses

- **F0**
 - Vowels in words perceived as prominent will have higher F0 peaks.

- **Vowel quality**
 - Hyper-articulation: vowel formants will indicate more peripheral place of articulation, because prominence enhances phonemic contrast
 - High vowel: lower F1
 - Low vowel: higher F1
 - Front vowel: higher F2
 - Back vowel: lower F2
 OR
 - Sonority Expansion: higher F1 regardless of vowel height
Methods
Materials and Participants

- **Materials**
 - 54 speech excerpts from 38 speakers in the Buckeye corpus of spontaneous speech of American English.
 - Sound files are equalized in their loudness level.
 - Length: 11 to 58 seconds.
 - Sound file presentation and its corresponding word transcripts

- **Participants**
 - 97 listeners from undergraduate Linguistics courses
 - Naïve in terms of phonetics and phonology of prosody transcription.
Transcription Task (continued)

- Simple definitions of prominence and boundary.
 - **Prominence** which “highlights” a word or a phrase and makes them “stand out” from other non-prominent words
 - **Boundary** which marks “a chunk of speech” and can help listeners interpret long stretches of continuous speech

- Playing sound files twice at their own pace.

- While listening, they marked “prominent” words and words at “juncture” using the following transcription marks:

 Prominence Boundary

 word_word_word word | word_word_word
Results of transcription task

- Transcriptions pooled over listeners; each word is assigned a probabilistic P(rominence) and B(oundary) score ranged 0-1.
Reliability of transcription

- Fleiss’ kappa inter-transcriber agreement scores and their corresponding z-scores

<table>
<thead>
<tr>
<th></th>
<th>Exp. 1</th>
<th></th>
<th>Exp. 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Run 1</td>
<td>Run 2</td>
<td>Run 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grp 1</td>
<td>Grp 2</td>
<td>Grp 1</td>
<td>Grp 2</td>
</tr>
<tr>
<td>prominence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kappa</td>
<td>0.373</td>
<td>0.421</td>
<td>0.394</td>
<td>0.407</td>
</tr>
<tr>
<td>z</td>
<td>19.43</td>
<td>20.48</td>
<td>18.15</td>
<td>18.31</td>
</tr>
<tr>
<td>boundary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kappa</td>
<td>0.612</td>
<td>0.544</td>
<td>0.621</td>
<td>0.575</td>
</tr>
<tr>
<td>z</td>
<td>27.62</td>
<td>21.87</td>
<td>25.05</td>
<td>26.22</td>
</tr>
</tbody>
</table>

- Fleiss' statistic shows that transcribers agreement is significantly above chance levels at $p<.001$

- Untrained listeners’ transcription is reliable.
Acoustic measurements

- F0
 -Measured in 1ms interval
 -Smoothed by median-filtering with a 13 point window only at CV junctures
 -Interpolating F0 contours

- Formants
 -Steady state formants (F1 and F2) measured
 - Monophthong: at vowel midpoint
 - Diphthong: at 10% and 90% of the vowel
Distribution of 14 stressed vowels

- F0, F1 and F2 are extracted from the stressed vowels of each word in order to hold stress constant.

<table>
<thead>
<tr>
<th>Vowels</th>
<th>a</th>
<th>æ</th>
<th>ʌ</th>
<th>ɔ</th>
<th>aʊ</th>
<th>aɪ</th>
<th>ɛ</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>173</td>
<td>290</td>
<td>407</td>
<td>121</td>
<td>52</td>
<td>309</td>
<td>463</td>
</tr>
<tr>
<td>ə</td>
<td>eɪ</td>
<td>i</td>
<td>i</td>
<td>oʊ</td>
<td>u</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>214</td>
<td>475</td>
<td>306</td>
<td>211</td>
<td>72</td>
<td>183</td>
</tr>
</tbody>
</table>

- Then the extracted acoustic measures are normalized.

\[z = \frac{x - \bar{x}}{s} \]

- F0 with a 400ms analysis window
- Formants in the total phone space
Results & Discussion
Hypothesis: The more prominent a word is, the higher F0 max will be.

Pearson’s bivariate correlation analysis b/w F0 max and Pscores

The results support the hypothesis.
- Pscores are **positively correlated** with F0 max for the majority of vowels.
- Overall, words perceived as prominent have higher F0 max.
Vowel Quality

- Pearson’s bivariate correlation analysis b/w formants and Pscores

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>α</th>
<th>æ</th>
<th>ʌ</th>
<th>ʊ</th>
<th>αʊ</th>
<th>αɪ</th>
<th>ε</th>
<th>ɪ</th>
<th>ɪɪ</th>
<th>ʊ</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>3398</td>
<td>173</td>
<td>290</td>
<td>407</td>
<td>214</td>
<td>52</td>
<td>309</td>
<td>463</td>
<td>214</td>
<td>475</td>
<td>211</td>
<td>72</td>
</tr>
<tr>
<td>F1</td>
<td>NA</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>F2</td>
<td>NA</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>F0 max</td>
<td>+</td>
</tr>
</tbody>
</table>

Notes:
- **F1** indicates formant frequency.
- **F0 max** represents the maximum formant frequency.
Monophthongs in the vowel space

Front	Back
High | i → u
Low | æ → α
Diphthongs in the vowel space

Front

High

Low

a

Back

u

I
Diphthongs in the vowel space
Evaluation of hypotheses

- Hyperarticulation
 The stressed vowels perceived as prominent are peripheral in the vowel space.
 - Partially supported: front/ back dimension
 - The front vowel i, the nucleus of \(a_U \), and the glide of \(e_I \) are more front when perceived as prominent.
 - The vowels other than those listed above are more back when perceived as prominent.
Evaluation of hypotheses

- Sonority Expansion
 Regardless of vowel height, the stressed vowel in a prominent word is more open.
 - Supported
 - Vowels have more open vocal tract except the low vowel \(\alpha \) and diphthongs when perceived as prominent.
Evaluation of hypotheses

- The combination of Hyperarticulation and sonority expansion best accounts for the relation between formants and prosodic prominence.
 - In front/ back dimension, peripheral vowel formants (F2) suggest that vowels are hyperarticulated under prominence.
 - In high/low dimension, higher vowel formants (F1) of non-low vowels suggest that sonority expands under prominence.
R² from stepwise regression analyses

R² (%)

Vowels

<table>
<thead>
<tr>
<th>Vowel</th>
<th>a</th>
<th>æ</th>
<th>Λ</th>
<th>ɔ</th>
<th>aɪ</th>
<th>aʊ</th>
<th>ɛ</th>
<th>ë</th>
<th>ɪ</th>
<th>ɪ这群</th>
<th>ɪ这群</th>
<th>ɪ这群</th>
<th>ʊ</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>R² (%)</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Legend:
- **F0 max**
- **F2**
- **F1**
Results of regression models

- Regarding the results from stepwise regression analyses,
 - only a small portion of the variation in listeners’ response to prominence (ranged from 3.3% for /æ/ - 23.2% for /aɪ/) can be explained on the basis of those measures
 - Not a single acoustic measure is included in the regression model across all vowels
 - Not a unified regression pattern accounts for the variation of prominence
Conclusion

- In this study, prominence in conversational speech produced by ordinary speakers is judged by untrained ordinary listeners.
 - This transcription task approximates how listeners hear prosody in everyday conversation.
- Listeners’ perception of prominence is guided by the modulation of the patterns of F0, F1 and F2.
Conclusion

- No single acoustic measure and no single pattern of prominence marks across vowels
- Therefore, other acoustic measures as well as other factors that affect the acoustic properties of speech should also be examined.
 - Duration and intensities (Mo, 2008a and b)
 - Syntactic category information (Cole, Mo & Baek., 2008)
 - Word repetition and frequency (Cole, Mo & Hasegawa-Johnson, 2008)
Thank you very much!

Acknowledgements

This research is supported by NSF grants IIS 07-03624 and IIS 04-14117 to Jennifer Cole and Mark Hasegawa-Johnson.

Jennifer Cole, Linguistics, UIUC
Mark Hasegawa-Johnson, ECE, UIUC
Prosody-ASR group members