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Abstract

Voice quality conveys both linguistic and paralinguistic information, and
can be distinguished by acoustic source characteristics. We label objective
voice quality categories based on the harmonic structure (H1-H2) and the
mean autocorrelation ratio of each phone. Results from a Support Vec-
tor Machine (SVM) classification experiment show that these features are
predictive of Perceptual Linear Predictive Cepstra (PLPC) used in speech
recognition. We further demonstrate that by incorporating voice quality
knowledge into a speech recognition system, we can improve word recogni-
tion accuracy.
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1 Introduction

Through modulation in source and filter characteristics, speech conveys both lin-
guistic and paralinguistic information. Fundamental frequency (F0) and harmonic
structure are important factors in encoding lexical contrast and allophonic varia-
tion related to laryngeal features (Gordon and Ladefoged, 2001; Maddieson and
Hess, 1987). They also play an important role in the expression of prosodic fea-
tures of stress and intonation (Epstein, 2002; Redi and Shattuck-Hufnagel, 2001).
In addition, shifts inF0 and voice quality can signal emotional state or affect,
as for example creaky voice is likely to signal the expression of boredom, and
breathy voice tends to signal intimacy.

It has been widely noted that there is a relationship betweenF0 and voice
quality. For example, Maddieson and Hess (1987) observe significantly higherF0

for tense vowels in languages that distinguish three phonation types with varying
voice quality (Jingpho, Lahu and Yi). However,F0 is not always a reliable indi-
cator of voice quality, as shown by studies of English that fail to show a strong
correlation between any glottal parameters andF0 (Epstein, 2002). On the other
hand, information obtained from spectral structure has been shown to be more
reliable for the discrimination of non-modal from modal phonation. For example,
Gordon and Ladefoged (2001) describe the characteristics of creaky phonation
as producing non-periodic glottal pulses, lower power, lower spectral slope, and
low F0. They report that spectral slope is the most important feature for dis-
crimination among different phonation types. Nı́ Chasaide and Gobl (1997) also
characterize creaky phonation as having lowF0 and irregular glottal pulses. They
state that significant spectral cues to creaky phonation are i) A1 (i.e., amplitude of
the strongest harmonic of the first formant) much higher than H1 (i.e., amplitude
of the first harmonic), and ii) H2 (i.e., amplitude of the second harmonic) higher
than H1.

Among numerous categories of voice quality (e.g., see Gerratt and Kreiman
(2001)) , it is known that creakiness (or glottalization) is highly correlated with
linguistic structure such that creakiness is more likely to be observed at word,
syntactic, or prosodic boundaries (Kushan and Slifka, 2006; Dilley et al., 1996;
Redi and Shattuck-Hufnagel, 2001; Epstein, 2002). Since creaky voice can cue
word-level and higher juncture, direct modeling of voice quality such as creaki-
ness in speech recognition systems is expected to result in improved word recog-
nition accuracy. And yet, the established importance of spectral structure, and in
particular the relative amplitude of the lower harmonics, for voice quality iden-
tification calls to question the viability of voice quality analysis for large speech



corpora, especially corpora consisting of low quality recorded speech, such as
telephone speech. We address this challenge in the present study by labeling the
voice quality of spontaneous telephone speech using both harmonic structure (a
spectral measure, occasionally corrupted by the telephone channel) and mean au-
tocorrelation ratio (a temporal measure, relatively uncorrupted by the telephone
channel). A validation test using Support Vector Machines (SVM) demonstrates
that these voice-quality-related measures are correlated with the average PLP cep-
strum of phones. We show that a PLC-cepstrum-based automatic speech recog-
nizer that incorporates voice quality information into the system performs better
than a complexity-matched baseline system that does not consider the voice qual-
ity distinction.

The paper is organized as follows. Section 2 introduces our method of voice
quality decision on the Switchboard corpus of telephone conversation speech.
Section 3 reports a classification result that shows the voice quality distinctions are
reflected in PLPC. Section 4 presents an HMM-based Automatic Speech Recog-
nition System (ASR) that incorporates voice quality knowledge. Section 5 com-
pares the performance of the voice quality dependent recognizer against a baseline
system that doesn’t distinguish different voice qualities. Section 6 concludes the
paper with discussion of the source of the ASR improvement in the increased
precision of the phone models that are specified for different voice qualities.

2 Voice quality decision

2.1 Corpus

Switchboard is a corpus of orthographically transcribed spontaneous telephone
conversations between strangers (Godfrey et al., 1992). The corpus is designed
mainly to be used in developing robust Automatic Speech Recognition. Our
analysis is based on a subset of the Switchboard files (12 hours) containing one
or more utterance units (10-50 words) from each talker in the corpus. Phone
transcriptions are obtained by forced alignment using the word transcription and
dictionary. In general, the quality of the recorded speech, which is sampled at
8kHz, is much inferior to speech samples recorded in the phonetics laboratory.
Although ITU (International Telecommunication Union) standards only require
the telephone network to reproduce speech faithfully between 300Hz and 3500Hz
(e.g., ITU Standard (1993)), our observations indicate that most signals in Switch-
board reproduce harmonics of the fundamental frequency faithfully at frequen-



cies as low as 120Hz. This conclusion is supported by the results of Yoon et al.
(2005), who demonstrated that measures of H1-H2 acquired from telephone-band
speech are predictive of subjective voice quality measures at a significance level
of p < 0.001. Post-hoc analysis of Yoon et al.’s results suggests that H1-H2 is an
accurate measure of glottalization for female talkers in Switchboard, but is less
accurate for male talkers, who often produce speech withF0 < 120Hz. The low
quality of telephone-band speech is also known to affect pitch tracking; as noted
in Taylor (2000), pitch tracking algorithms known to be reliable for laboratory-
recorded speech often fail to extract anF0 during regions perceived as voiced
from the Switchboard corpus.

2.2 Feature extraction and voice quality decision

As mentioned above, the Switchboard corpus has the drawback that the record-
ings are bandlimited signals. The voice quality of creakiness is correlated with low
F0, which hinders accurate extraction of harmonic structure if theF0 falls below
120Hz. To enable a voice quality decision for signals withF0 below 120Hz, we
use a combination of two measures: H1-H2 (a spectral measure) and mean auto-
correlation ratio (a temporal measure) in the decision algorithm for voice quality.

We use Praat (Boersma and Weenink, 2005) to extract the spectral and tem-
poral features that serve as cues to voice quality. First, intensity normalization is
applied to each wave file. Following intensity normalization, inverse LPC filtering
(Markel, 1972) is applied to remove effects of the vocal tract on source spectrum
and waveform.

From the intensity-normalized, inverse-filtered signal, minimumF0, meanF0,
and maximumF0 are derived over each file. These three values are used to set
ceiling and floor thresholds for short-term autocorrelationF0 extraction, and to
set a window that is dynamically sized to contain at least four glottal pulses.F0

and mean autocorrelation ratio are calculated on the intensity-normalized, inverse-
filtered signal, using the autocorrelation method developed by Boersma (1993).
The unbiased autocorrelation functionrx(τ) of a speech signalx(t) over a window
w(t) is defined as in (1):

rx(τ) ,
∫

x(t)x(t + τ)dt∫
w(t)w(t + τ)dt

(1)

whereτ is a time lag. The mean autocorrelation ratio is obtained by the following



formula (2):

r̄x =

〈
max

τ

rx(τ)

rx(0)

〉
(2)

where the angle brackets indicate averaging over all windowed segments, which
are extracted at a timestep of 10ms. The range of the mean autocorrelation ratio
is from 0 to 1, where 1 indicates a perfect match, and 0 indicates no match of the
windowed signal and any shifted version.

Harmonic structure is determined through spectral analysis using FFT and
long term average spectrum (LTAS) analyses applied to the intensity-normalized,
inverse filtered signal. H1 and H2 are estimated by taking the maximum ampli-
tudes of the spectrum within 60 Hz windows centered atF0 and 2×F0, respec-
tively, as in (3):

H1−H2 = max
−60<δ1<60

20 log10 |X(F0 + δ1)|
− max
−60<δ2<60

20 log10 |X(2F0 + δ2)| (3)

whereX(f) is the FFT spectrum at frequencyf .
H1 and H2 are related to the Open Quotient (OQ) (Hanson and Chuang, 1999).

OQ is defined as the ratio of the time in which the vocal folds are open to the
total length of the glottal cycle. In creaky voicing, the vocal folds are held tightly
together (though often with low internal tension), resulting in a low OQ. In breathy
voicing, the vocal folds vibrate without much contact, thus the glottis is open for
a relatively longer portion of each glottal cycle, resulting in a high OQ. In modal
voicing, the vocal folds are open during part of each glottal cycle, resulting in the
OQ between those for the creaky voicing and for the breathy voicing.

Yoon et al. (2005) previously used spectral features including H1-H2 to clas-
sify subjective voice quality with 75% accuracy. Subjective voice quality labels
used in that experiment are not available for the research reported in this paper. In
the current work, interactively-determined thresholds are used to divide the two-
dimensional feature space[r̄x, H1−H2] into a set of voice-quality-related objec-
tive categories, as follows. For each 10ms frame, the “voiceless” category includes
all frames for which no pitch can be detected. The “creaky phonation” category
includes all frames for whichH1 − H2 < −15dB, or for whichH1 − H2 < 0
andr̄x < 0.7. All other frames are labeled with an objective category label called
“non-creaky phonation.”



3 Voice quality distinction reflected in PLPC

As discussed in section 1, the acoustic measures we extracted (see section 2) are
correlated with the voice quality of creakiness. These features (i.e., H1−H2 and
mean autocorrelation ratio) are not a standard input to speech recognition systems.
Instead, PLPC (Perceptual Linear Predictive Cepstra) or MFCC (Mel Frequency
Cepstral Coefficients) are usually used as standard input features. There are two
ways of incorporating the features related to the voice quality into a speech recog-
nition system: (1) appending the voice quality related features, as described in
section 2, to the standard PLPC or MFCC feature vectors, or (2) modeling phones
of different voice qualities separately as allophonic variants, while not modify-
ing standard feature vectors. In the latter approach, which we use in our current
experiment, it is necessary to test whether the voice quality related features are
related to the standard speech recognition feature vectors.

PLPC (Perceptual Linear Predictive Cepstra) is an auditory-like spectrum that
combines together the frequency-dependent smoothing of MFSC (mel-frequency
spectral coefficients) with the peak-focused smoothing of LPC (Hermansky, 1990).
In our work, thirty-nine PLPC coefficients are extracted over a window size of
25ms with a timestep of 10ms. PLPC features typically perform well for speech
recognition purposes, even with noisy (low SNR) signals. In order to show that
the voice quality distinction based on H1-H2 and the mean autocorrelation ratio is
also reflected in the acoustic features used in speech recognition, such as PLPC,
this section reports the results of a validation test using SVM (Support Vector
Machine) classification.

We conduct an experiment to classify non-creaky phonation versus creaky
phonation for each sonorant (i.e., vowel, semi-vowel, nasal or lateral). The phone-
aligned transcription for each file is obtained using HTK (Young et al., 2005), and
aligned against the voice quality label sequences given by the frame-level voice
quality decisions described before. For each sonorant segment, if more frames
indicate creakiness than the other voice qualities (i.e., modal or voiceless), the
phone is labeled as creaky. We divide the 12 hour Switchboard subset into a
training candidate pool (90%) and a testing candidate pool (10%). Then for each
sonorant phone from the training candidate pool, we extract a subset of the non-
creaky tokens that is equal in size to the creaky tokens for the same phone, based
on the creakiness label resulting from the decision scheme. These non-creaky
and creaky tokens compose the training data for each sonorant. The testing data
for each sonorant are similarly generated from the testing candidate pool, which
also have equal numbers of creaky and non-creaky tokens and no overlap with the



training data. We use the SVM toolkit LibSVM (Chang and Lin, 2004), which
implements a statistical learning technique for pattern classification, to perform
supervised training of binary classifiers of creaky versus non-creaky phones for
each sonorant, and tested the classification over the testing data, for each sonorant
separately.

The classification accuracies obtained from the testing data for each sonorant
are reported in Table (1). Our purpose here is to verify whether there are acoustic
differences in the PLPC coefficients that reflect the voice quality distinction we
identify using the knowledge-based method described in the previous section. We
do not attempt to optimize the SVM classification of creaky versus non-creaky
phones in this experiment. Therefore, the default parameter setting of the radial
basis function (RBF) in LibSVM is used without modification.

Table 1:SVM classification of voice qualities for each phone. The first and third
columns list the creaky (indicated bycr) versus non-creaky phones. The second
and fourth columns are the overall accuracy of the classification results.

Phones Accuracy Phones Accuracy

uh uhcr 74.47% w w cr 69.91%
er ercr 73.26% ih ih cr 69.75%

aw awcr 73.26% ow ow cr 69.09%
eh ehcr 71.93% y y cr 68.45 %
ae aecr 71.52% l l cr 68.23 %

uw uw cr 71.42% ao aocr 68.04 %
iy iy cr 70.51% m m cr 67.79 %
ey eycr 70.50 % ax axcr 67.24 %
ay aycr 70.37 % el el cr 66.85 %
ah ahcr 70.14 % r r cr 66.36 %
aa aacr 70.13 % oy oy cr 63.24 %
ng ngcr 70.05 % en encr 58.19 %
n n cr 70.03 %

As shown in the Table (1), the PLPC features are correctly classified with the
overall accuracy of 58% to 74% (with an average overall accuracy of 69.23%).
The baseline performance of the binary classification is 50%. An average of
19.23% of improvement in the classification suggests that the voice quality de-
cision is reflected to some degree in the PLPC features, which in turn suggests
that we can conduct a PLPC-based speech recognition experiment utilizing the



Figure 1:The general automatic speech recognition architecture used in the base-
line system and the voice quality dependent system

voice quality information.

4 Voice quality dependent speech recognition

Given an acoustic signalA, the goal of a speech recognition system is to find the
sequence of wordŝS = arg maxS p(S|A). The general automatic speech recog-
nition architecture is shown in Figure (1). Acoustic phonetic and phonological
properties of speech sounds are represented by the HMM models, which usually
have three emitting states, each having transitions either to itself or to the state
on the right. The observation distribution of each state is multi-mixture Gaussian.
Each HMM model corresponds to a triphone (e.g., “r-ih+k”), which describes al-
lophonic variation by setting the acoustic properties of a given phone as a function
of both the preceding and following phones.

4.1 Baseline system

We build a triphone-clustered HMM-based speech recognition system as the base-
line system. In this system, we use HTK (Young et al., 2005) to cluster and tie the
counterpart states, such as state 2 of “r-ih+k” and “s-ih+k”, in some allophones



among the triphone HMM models according to a phonetic binary clustering tree.
Every triphone unseen in the training data is synthesized by tying the states of
the HMM to three states, chosen by the clustering tree, from seen allophones.
Transition matrices of all allophones are tied together. Finally, Gaussian mixtures
are incremented and parameters are further estimated to increase the number of
mixture components in the output distribution of all states.

4.2 VQ-ASR system

The Voice Quality Automatic Speech Recognition (VQ-ASR) system incorporates
into the baseline system binary voice quality information (creaky/non-creaky) for
every sonorant phone.

Inclusion of Voice Quality Information : We use HTK to obtain the phone-
aligned transcription from the Switchboard word transcription and wave files.
This phone-aligned transcription is aligned against the voice quality label se-
quences given by theframe voice quality decisionsdescribed before. For a vowel,
semi-vowel or nasal, if more frames indicate creakiness than the other voice qual-
ities (i.e., modal or voiceless), a “creakiness label” is attached to it.

Recognition Dictionary with Voice Quality Information : To perform speech
recognition using voice quality information, we need a new dictionary having all
possible pronunciations of the same word, with different voice quality settings.
For example, for “bat b+ae b-ae+t ae-t” in the baseline system dictionary, the dic-
tionary in VQ-ASR system should have two entries “bat b+ae b-ae+t ae-t” and
“bat b+ae0 b-ae0+t ae0-t”, where “0” represents the “creakiness label”.

Reduction of the Number of Parameters: The number of triphones increases
dramatically as the creakiness label “0” can be attached to the central phone and
one or both of the neighboring phones, for each triphone. To reduce the number
of parameters, we treat the triphones with different voice quality setting, e.g. “b-
ae+t” and “b-ae0+t”, as allophones of the same root monophone; both of these
triphones are included in the same decision tree by the triphone clustering process.
By tying transition matrices of all allophones, tying states of some allophones with
the help of a tree-based clustering technique, and synthesizing unseen triphones in
the same way as the baseline system, we build the VQ-ASR system with an almost
identical number of parameters as the baseline system, despite the increase of
triphones. This is necessary, because any increase in model parameters will have a
tendency to improve recognition performance, which would make the comparison
between the VQ-ASR system and the baseline system inaccurate.



5 Experimental result

Word recognition accuracies of the voice quality dependent and voice quality in-
dependent speech recognition systems are shown in Table (2). In our experiment,
both systems are prototype ASR systems, trained and tested on the 12 hour sub-
set of Switchboard. These systems are designed to identify the impact of voice
quality dependency, and as such we do not compare our systems to full systems
trained on much larger amounts of data (e.g., Luo and Jelinek (1999); Sundaram
et al. (2000)). The comparison of the results in Table (2) is made under the con-
dition of (i) tied transition probabilities for all allophones and (ii) an almost iden-
tical number of states for both systems. This allows for a stringent comparison
between systems with a nearly equal number of parameters. As seen in Table
(2), when voice quality information is incorporated in the speech recognition sys-
tem, the percentage of words correctly recognized by the system increases by ap-
proximately 0.86% on average and the word accuracy increases by approximately
1.05% on average. It is worth noting that as the number of mixtures increases to
19, the improvement in the percentage of words correctly recognized increases to
2.53%, and the improvement in the word accuracy increases to 1.81%.

Table 2: Word recognition accuracy for the voice quality dependent and voice
quality independent recognizers. The number of mixtures in the HMM states are
in the first column. %Correct is equal to the percentage of the reference labels that
were correctly recognized. Accuracy is more comprehensive measure of recog-
nizer quality that penalize for insertion errors.

Mixture Baseline VQ-ASR
% Correct Accuracy % Correct Accuracy

3 45.81 39.28 46.42 39.35
9 52.77 45.31 52.77 46.01

19 52.88 46.82 55.41 48.63

6 Discussion and conclusion

In this paper, we have shown that a voice quality decision based on H1-H2 as a
measure of harmonic structure, and the mean autocorrelation ratio as a measure
of temporal periodicity, provides useful allophonic information to an automatic



speech recognizer. Such voice quality information can be effectively incorporated
into an HMM-based automatic speech recognition system, resulting in improved
word recognition accuracy.

As the number of mixture components of the HMM increases, the VQ-ASR
system surpasses the baseline system by an increasingly greater extent. Given
that the number of untied states and transition probabilities in the HMMs in both
systems are identical, it follows that the VQ-ASR system benefits more from an
increasingly precise observation PDF (probability density function), compared to
the baseline system. Although we don’t know why added mixtures might help
the VQ-ASR more than the baseline, we speculate that there must be an interac-
tion between the phonetic information provided by voice quality labels, and the
phonetic information provided by triphone context. Perhaps the acoustic region
represented by each VQ-ASR allophone is fully mapped out by a precise obser-
vation PDF to an extent not possible with standard triphones.

Similar word recognition accuracy improvements have been shown for al-
lophone models dependent on prosodic context (Borys, 2003). Glottalization
has been shown to be correlated with prosodic context (e.g., Redi and Shattuck-
Hufnagel (2001)), thus there is reason to believe that an ASR trained to be sen-
sitive to both glottalization and prosodic context may have super-additive word
recognition accuracy improvements.
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